
A practically efficient graph-theoretic approach to protein identification in

mass spectrometry

Oliver Serang

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2011

Program Authorized to Offer Degree: Genome Sciences

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Oliver Serang

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

William Stafford Noble

Reading Committee:

William Stafford Noble

Walter L. Ruzzo

Philip Green

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree
at the University of Washington, I agree that the Library shall make its copies freely available
for inspection. I further agree that extensive copying of this dissertation is allowable only for
scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests
for copying or reproduction of this dissertation may be referred to Proquest Information and
Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the
author has granted “the right to reproduce and sell (a) copies of the manuscript in microform
and/or (b) printed copies of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

A practically efficient graph-theoretic approach to protein identification in mass

spectrometry

Oliver Serang

Chair of the Supervisory Committee:
Professor William Stafford Noble
Department of Genome Sciences

Tandem mass spectrometry has emerged as a powerful tool for the characterization of complex

protein samples, an increasingly important problem in biology. The effort to efficiently and ac-

curately perform inference on data from tandem mass spectrometry experiments has resulted in

several statistical methods. This thesis rephrases existing methods using a common framework,

categorizes them, and discusses them in detail. Each method is analyzed and evaluated by

considering the nature of the approach and the outcome and methodology of published com-

parisons to other methods; the analysis of existing method comparisons is used to comment on

the qualities and weaknesses, as well as the overall utility, of these methods. The analysis of

existing methods is utilized to propose Fido, a novel Bayesian approach to protein identifica-

tion; Fido is demonstrated to equal or surpass the state-of-the-art methods. Fido uses a simple

generative model of the tandem mass spectrometry process, and employs graph transformations

to perform inference efficiently. These graph transformations are then combined with formal

graph-theoretic inference procedures to increase the efficiency of inference and facilitate infer-

ence on more complex graphs resulting from more sophisticated models of the tandem mass

spectrometry process. Extensions of the simple Bayesian model, as well as new directions for

the field, are proposed; these proposed changes will help formalize, unify, and improve upon

qualitatively similar techniques that are employed by existing methods. A formalized approach

improves the quality and reliability with which proteins can be identified in complex mixtures.

TABLE OF CONTENTS

Page

List of Figures . ii

List of Tables . iii

Chapter 1: Tandem mass spectrometry and its application to complex protein mixtures 1

1.1 Introduction . 1

1.2 A survey of existing approaches . 6

1.3 Comparison of existing approaches . 25

Chapter 2: Fido: A novel Bayesian approach to protein inference 32

2.1 Data sets . 33

2.2 Results . 35

2.3 Discussion of accuracy and calibration evaluation 54

Chapter 3: Quantitative derivation of inference and graph transformations 60

3.1 Statistical notation . 60

3.2 Assumptions . 61

3.3 Method . 62

3.4 Analysis of approximation errors from pruning 72

Chapter 4: Extending the Fido method with formal graph-theoretic procedures 74

4.1 Methods for graphical inference . 74

4.2 Data sets . 75

4.3 Results . 75

4.4 Discussion of graphical methods for efficient inference 86

Chapter 5: The future of statistical analysis for protein inference 88

Bibliography . 93

i

LIST OF FIGURES

Figure Number Page

1.1 An overview of the process by which tandem mass spectrometry is applied to
identifying proteins in complex mixtures . 2

1.2 A labeled example of a tripartite graph from protein identification 8

2.1 A graphical view of the assumptions in the Fido model 36

2.2 A graphical visualization of the three graph transformations used by the Fido
method to increase efficiency . 39

2.3 Target vs. decoy identification curves for each data set 45

2.4 Calibration curves for each data set . 48

2.5 An example of proteins ranked differently by the ProteinProphet and Fido methods 53

2.6 Improved target-decoy discrimination of the Fido method as less less aggressive
pruning thresholds are used . 55

3.1 Histograms showing the number of PSMs at each score that need to be pruned
in order to achieve a very efficient marginalization 73

4.1 An example of tree decomposition for a demo protein inference problem 77

4.2 Histograms showing the number of connected subgraphs at each computational
cost for various data sets . 82

4.3 A connected yeast subgraph of 22 proteins and the resulting, more efficient tree
decomposition . 84

4.4 The relationship between runtime and largest absolute protein posterior error for
different inference methods . 85

ii

LIST OF TABLES

Table Number Page

1.1 Random variables and tripartite graph notation are defined for discussing all
methods . 7

1.2 Editorialized and evaluated results from published comparison between existing
methods . 27

2.1 The number of matched spectra and proteins from each data set 34

2.2 The efficiency improvement from the graph transformations used by the Fido
method . 42

2.3 The sensitivity at various FDR for each data set 47

2.4 The accuracy of protein identifications by degeneracy class 51

iii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my committee and my coauthors Drs.

Walter (Larry) Ruzzo, Phil Green, Dave Goodlet, and Michael MacCoss. I am particularly

grateful to my advisor Dr. William Noble, who discovered, years before me, that artificial life

is second to actual life. I would also like to thank Drs. Thomas Miller and Stephen Walsh for

several rewarding challenges in my engineering studies. I am extremely grateful to Drs. Bruce

Weir, Jeff Thorne, Hirohisa Kishino, and Spencer Muse, who first introduced me to the beautiful

quantitative puzzles in computational biology. I would also like to thank the people with whom

I’ve been close.

iv

DEDICATION

This thesis is dedicated to the dog Laika, who went on a brilliant adventure and never came home.

Let all of life be an unfettered howl. Like the crowd greeting the gladiator. Don’t

stop to think, don’t interrupt the scream, exhale, release life’s rapture. Everything

is blooming. Everything is flying. Everything is screaming, choking on its screams.

Laughter. Running. Let-down hair. That is all there is to life. –Vladimir Nabokov

v

1

Chapter 1

TANDEM MASS SPECTROMETRY AND ITS APPLICATION TO
COMPLEX PROTEIN MIXTURES

1.1 Introduction

Recent advances in DNA sequencing and genomics have made it possible to reconstruct and

study the 1918 influenza virus [35], increase the visible color spectrum of mice using human

genes [11], and elucidate the process by which some bacteria can reassemble their shattered

genomes after exposure to extremely high levels of radiation [37]. But DNA sequencing has its

limits; for instance, all cells in the human body are genomically identical despite their vast and

observable functional differences. Finding the proteins, which have functional importance, in a

group of cells can be much more informative. High-throughput sequencing methods have been

applied to RNA [22], an intermediate between DNA and protein, but RNA transcript is often

a poor surrogate for protein expression; not all of the transcribed RNA is translated, and once

translated, the half-lives of different proteins vary widely [9, 3].

Tandem mass spectrometry has emerged as the most powerful tool for analysis of proteins in

complex mixtures [30, 20]. Figure1.1A displays the process by which data is acquired in tandem

mass spectrometry-based proteomics. A protein sample is first subjected to enzymatic digestion

which breaks the protein into peptides; if a protein is represented as a string of its amino

acids, then the peptides produced by digestion will be a set of substrings. Certain digestive

enzymes, for example trypsin or chymotrypsin, cut only at specific amino acids, resulting in

a small number of possible peptides for each protein. After digestion, the peptide mixture is

separated using liquid chromatography (LC), which sequentially elutes peptides according to their

hydrophobicity. Subsequently, the population of peptides eluted at a particular retention time

are further separated by their precursor mass to charge ratio (m/z) using mass spectrometry;

this is accomplished by selecting high intensity peaks from the precursor scan. The population of

peptides with a particular retention time and m/z value is then fragmented at certain chemical

2

(A)

������ ��

��������������

�
�
��
�
��
�
�
��
��

�

��

���

��
��
�
�
��
�

�������������

��

��
��
�
�
��
�

���

��������������������

(B)
���

�����������

�������

������

���������

������

���
����������������

�����������������

�������������������������

�����������

�������

����������������������������

����������������������������

����������������������������

���������������������������������

����������������
������������ �����������

������

Figure 1.1: Protein identification using tandem mass spectrometry. (A) In the tandem mass

spectrometry-based proteomics experiment, a collection of proteins is digested into peptides.

The peptides are separated by their LC retention time and then by separated by precursor m/z

using mass spectrometry (MS). The resulting peptide population is fragmented and subject to

a second round of mass spectrometry to produce a tandem mass spectrum. This process is

repeated for different LC elution times and precursor m/z values to produce several thousand

tandem mass spectra. (B) The observed tandem mass spectra are matched to peptides using a

search database. In the graphical view of the inference problem, proteins are adjacent to their

constituent peptides.

3

bonds, producing a population of fragments for each peptide. Ideally, the population of peptides

fragmented is homogenous. The m/z of each fragment in this population is then measured using

mass spectrometry to produce a tandem mass spectrum, a collection of summary statistics about

that population of fragments. This process is repeated for different LC retention times and m/z

values, resulting in several thousand tandem mass spectra from a single experiment.

The problem of tandem mass spectrometry-based protein identification is to identify the

proteins in the original sample from the observed tandem mass spectra (Figure 1.1B). By using

existing knowledge from classical genetics, biochemistry and genomics, it is possible to create a

database containing an approximate set of all possible proteins of interest for a given sample.

The proteins in this database can be associated with the peptides they would be expected to

produce when subject to digestion, creating a peptide database; these peptides may consist

of only those that result from a perfect digestion, or may include peptides produced via non-

standard cleavages. Each observed spectrum is mapped to one or several peptides by comparing

it to the predicted theoretical tandem mass spectrum for each peptide in the peptide database

[7, 23]. These peptide-spectrum matches (PSMs) are imperfect: error may result from several

sources. For instance, matching the spectra to peptides in the peptide database implicitly makes

the incorrect assumption that the population of peptides at each hydrophobicity and m/z value

is homogeneous. Error can also result from an oversimplified model of how peptides generate

observed spectra. Furthermore, it is well-established that some peptides, for instance those with

extreme m/z values, are infrequently observed, even when they are present [19, 34].

PSMs are scored by the quality of the match between the observed and theoretical tandem

mass spectra [14, 12, 15] and associated with the proteins that would theoretically produce them

when digested. These associations between proteins, peptides, and spectra can be represented

graphically to form a tripartite graph on proteins, peptides, and spectra by placing edges between

proteins and their constituent peptides and between peptides and spectra that match them

(Figure 1.1B). All protein identification algorithms start with this tripartite graph and the PSM

scores, and then compute either a predicted set of present proteins or a ranking of proteins based

on the belief that they are present in the sample.

An ideal protein identification method would maximize sensitivity, the proportion of truly

present proteins that are identified, while simultaneously minimizing the false discovery rate

4

(FDR) [4] of identified proteins. The FDR measures the proportion of identified proteins that

are not truly in the sample. The FDR is a useful measure because it quantifies the proportion of

protein identifications that would be biologically meaningless in a follow-up experiment. Evalu-

ating a method by estimating the sensitivity and FDR of a method is not trivial, because it is

difficult to develop gold standards for complex protein mixtures, which are the most interesting

application for tandem mass spectrometry-based protein identification.

1.1.1 Notation

In this thesis, the existing methods for protein identification are described using a common

framework. Figure 1.2 presents a graphical view of well-established dependencies in protein

inference; these dependencies clearly reflect dependencies inherent in the mass spectrometry

process and are used by every protein identification method. The proteins are denoted using a

collection of random indicator variables X. Similarly, the peptides are denoted using a collection

of random indicator variables Y . The collection of observed spectra and any other associated

evidence (for instance, the precursor m/z associated with the spectrum) are encapsulated in a

collection D. For simplicity, the objects in the collection D are referred to as “spectra,” even

though they may be spectra paired with precursor masses or other information. Without loss of

generality, a peptide identified at multiple charge states can either be treated as a single peptide

or treated as several unique peptides (one for each charge state). Every method discussed can

be approached in one of these ways without making specific note of charge state. The index

variables i, j, k are used to respectively index the collection of proteins, peptides, and spectra.

Table 1.1 provides a quick reference for this notation.

Denote the tripartite graph on all proteins in the protein database, all peptides in the pep-

tide database, and all observed spectra as G = (E, V); let G′ = (E′, V ′) denote the “observed

graph,” a subgraph of G containing only the peptides in G adjacent to observed spectra and

only the proteins in G adjacent to those peptides. Note that G depicts a subset of possible

dependencies in the general inference problem; a specific model may introduce further depen-

dencies by tying parameters that model the processes depicted in this graph. Conversely, some

approaches approximate the known dependencies by removing edges from or altering G. Unless

5

otherwise stated, all models assume that proteins and peptides not included in the observed

graph are absent.

Of particular interest are peptides and spectra like those labeled with an asterisk in Fig-

ure 1.2. Peptides in G adjacent to multiple proteins are called “degenerate peptides”; likewise,

spectra that match multiple peptides are known as “degenerate spectra.” Peptide and spec-

trum degeneracy are noteworthy because without degenerate peptides and degenerate spectra,

G is a tree; inference on that tree can be performed efficiently (unless further dependencies are

introduced by tying parameters). Because the proteins and peptides are represented by boolean

random variables, the computational cost of a generic naive approach to inference on a general

graph may be exponential in both the number of peptides and proteins queried; in practice the

number of peptides and proteins of interest is often on the order of ten thousand, making such

a naive approach to protein inference practically infeasible.

Let sj,k denote the PSM score for a paired peptide j and spectrum k. sj,k is a rough

estimate of Pr(Yj |Dk) for (j, k) ∈ E. In practice, PSM scoring algorithms estimate a likelihood

proportional to Pr(Dk|Yj = yj) for (j, k) ∈ E. This likelihood is estimated empirically using

distributions of features of example PSMs where Y is known. Peptide scoring procedures assume

that the spectrumDk is not degenerate and thus cannot arise from any other peptide; degenerate

spectra are eliminated by keeping only the edge to the peptide with the highest likelihood score.

By also estimating the prior probability Pr(Yj = yj), these methods then use Bayes rule to

estimate:

sj,k = Pr(Yj |Dk) =
Pr(Dk|Yj) Pr(Yj)

∑

yj
Pr(Dk|Yj = yj) Pr(Yj = yj)

In general, sj,k is not a good approximation for Pr(Yj |D) for two reasons. First, a peptide may

be included in several PSMs with different scores. Second, sj,k does not incorporate protein-level

information, which causes covariance in peptides adjacent to the same protein.

1.1.2 Protein grouping

Many of the methods presented below perform some form of protein grouping; that is, they

merge multiple proteins together into a single graph node before or during inference. These

nodes are then treated as a single protein. Some methods even use the graph connectivity to

6

remove certain proteins before inference is performed.

Unless otherwise stated, “protein grouping” refers to the process by which proteins are

merged together into a single protein group if they are adjacent to identical peptide sets in G.

After they are merged, these protein groups are treated as any other protein; therefore, both

proteins and protein groups are referred to as “proteins.” In addition, some methods remove a

protein if it is adjacent to a set of peptides that is a subset of the peptides adjacent to another

protein. This principle is denoted as the “Occam’s razor principle.”

Protein grouping makes evaluation of protein identication methods more difficult because

identification of a protein group does not imply that all proteins in the group are present. Instead,

a present protein group indicates that at least one protein contained in the group is present.

In contrast, the Occam’s razor principle does not make interpretation of the identified proteins

more difficult, but the principle can make it more difficult to intuitively understand methods that

employ it by adding a heuristic behavior to an otherwise probabilistic or numerical method.

1.2 A survey of existing approaches

Several computationally feasible approaches have emerged for performing protein inference from

G and the PSM scores. Here these methods are classified as belonging to one of the following

categories: set cover methods, iterative methods, and Bayesian methods. Set cover methods

approach the problem by accepting a set of peptides based on their associated PSM scores

and then accepting a set of proteins based on their adjacency to the accepted PSMs. Iterative

methods employ numeric heuristics, which are often probabilistically motivated, to iteratively

compute protein scores until convergence is reached. Lastly, Bayesian methods generatively

model the mass spectrometry process and then attempt to compute or approximate marginals

or a maximum a posteriori (MAP) set for the proteins.

1.2.1 Set cover methods

One- and two-peptide rules The one- and two- peptide rules are the simplest methods for

protein identification. First, peptides are thresholded so that only peptides paired in a PSM with

a score at least τ are present. Second, proteins are similarly thresholded to keep only proteins

7

Name Meaning Indexed by

X Collection of indicator variables for the proteins i, i′, . . .

Y Collection of indicator variables for the peptides j, j′, . . .

D Collection of observed spectra and precursor masses k, k′, . . .

s Collection of PSM scores (j, k)

G = (E, V) The graph containing all proteins, peptides, and observed data –

G′ = (E′, V ′)
The graph containing all observed data, peptides adjacent to

the observed spectra, and proteins adjacent to those peptides
–

x∗
Collection of indicator variables for the proteins identified by a

method
i, i′, . . .

y∗
Collection of indicator variables for the peptides identified by a

method
j, j′, . . .

Table 1.1: Notation reference. Here each random variable used in is defined. The variables

used to index each collection are also presented. Because the notation for indices is consistent,

the type of variable accessed in the graph G is known by the name of the variable: i ∈ V, i′ ∈ V

are proteins in G, j ∈ V, j′ ∈ V are peptides in G, and k ∈ V, k′ ∈ V are observed spectra.

Similarly, (i, j) ∈ E denotes an edge between protein i and peptide j and (j, k) ∈ E denotes an

edge between peptide j and spectrum k.

8

Figure 1.2: The general graphical view of dependencies in protein inference. Proteins (X),

peptides (Y), and spectra (D) form a tripartite graph with edges indicating well-established

dependencies motivated by the mass spectrometry process. Examples of a degenerate peptide

and a degenerate spectrum are labeled with asterisks.

9

adjacent to at least one (or at least two when using the two-peptide rule) present peptides.

Formally, the N -peptide rule can be stated as follows:

y∗j = ∃k : (j, k) ∈ E, sj,k ≥ τ

x∗i = |{y∗j : (i, j) ∈ E}| ≥ N

Usually, degenerate spectra are eliminated by keeping only the edge pairing a spectrum with

its highest-scoring peptide match; although this step is not necessary, it prevents an individual

spectrum from matching several peptides. Note that using the one-peptide rule by itself, a single

degenerate peptide may force several proteins to be present (for the N -peptide rule, N peptides

would be required).

DTASelect DTASelect [32] is a more sophisticated version of the one- and two-peptide rules.

First, protein grouping may be performed. Then, DTASelect lets the user select from several

criteria to determine which peptides are present, for example, peptides contained in a PSM with

a score greater than a threshold or peptides matching at least a certain number of spectra.

Similarly, the user manually creates a rule for what proteins are present. Formally, DTASelect

allows users to define pairs of scoring functions and thresholds fY , τY and fX , τX for peptides

and proteins, respectively:

y∗j = fY (G, s) ≥ τY

x∗i = fX(G, s, y∗) ≥ τX

DTASelect can also determine which proteins are similar to a given protein by comparing their

sets of adjacent peptides; this similarity measure can be useful to determine situations when a

set of peptides can originate from many possible sets of proteins that contain similar sets of

adjacent peptides.

IDPicker Frequently, one present protein will produce a handful of degenerate peptides associ-

ated with high-scoring PSMs. In such a situation, the one- and two-peptide rules and DTASelect

may not only infer that the present protein was in the sample, they may also infer that many

other proteins adjacent to these peptides were in the sample. Consequently, degenerate peptides

10

may lead to a high FDR with these approaches. IDPicker [38] addresses this problem by finding

the smallest set of proteins to explain the present peptide set. This smallest protein set defines

the “minimum set cover” of the present peptides. Formally, if y is the set of peptides adjacent

to the present set of proteins y, IDPicker performs the following optimization:

y∗j = fY (G, s) ≥ τY

yj =

1, ∃i : (i, j) ∈ E, xi

0, else

x∗ = argmin
x′:y∗⊂y

|x|

Because it defines the present peptides conditional on the present proteins, and then optimizes

a constrained set of these proteins, IDPicker models the mass spectrometry process from left to

right in the graph in Figure 1.2. In contrast, the one- and two-peptide rules and DTASelect define

the peptide and protein relationship conditionally from right to left on the graph in Figure 1.2,

despite the fact that the processes underlying mass spectrometry conditional dependency are

oriented from left to right.

From a probabilistic perspective, there is an inherently Bayesian flavor to IDPicker. The

necessity that all threshold-passing peptides must be explained can be enforced by using a

likelihood that is nonzero only when each of those peptides is adjacent to a present protein.

Furthermore, large protein sets can be penalized by placing a prior on X that decreases with the

cardinality of X (via an arbitrary strictly decreasing positive function h). The MAP estimate of

the resulting model will be identical to the minimum set cover found by IDPicker; of the protein

sets that result in nonzero likelihood, the smallest will have the highest prior and will therefore

be the MAP estimate (at least one nonzero likelihood is guaranteed because each peptide in the

11

graph must be adjacent to at least one protein, by definition).

y∗j = fY (G, s) ≥ τY

Pr(D|Y) =

1, y∗ ⊂ Y

0, else

Yj |X =

1, ∃i : (i, j) ∈ E,Xi

0, else

Pr(X) ∝ h(|X|)

D ⊥⊥ X|Y

IDPicker performs protein grouping; this operation resolves some possible ambiguities where

two sets of proteins would both be candidates for the MAP estimate. Note that, in this context,

the Occam’s razor principle would be redundant, because any protein set containing a protein

adjacent in G to a subset of the peptides from another protein could be reduced to explain the

same peptides without including the former protein.

1.2.2 Iterative methods

ProteinProphet ProteinProphet [21] is one of the first probabilistically motivated methods

for protein identification, and is still one of the most popular and highly regarded. First simpli-

fied version of their procedure will be described and then use that to motivate the additional

complexity used in ProteinProphet.

ProteinProphet operates on G′, the graph of observed data and the adjacent peptides and

proteins; proteins not in G′ are given posteriors of zero. First, ProteinProphet performs protein

grouping using this graph and eliminates proteins by the Occam’s razor principle. Then, Protein-

Prophet eliminates degenerate spectra by removing all but the highest scoring PSM containing

each spectrum. Then ProteinProphet computes peptide scores from the remaining connected

PSMs; these scores are treated as approximate peptide probabilities:

12

s′j = max
k

sj,k

= sj,k(j), k(j) = argmax
k

sj,k

≤ 1−
∏

k

(1− sj,k)

First, consider a graph with no degenerate peptides. In this case, a simplified version of

ProteinProphet assumes that each peptide contributes independent evidence to the protein

adjacent to that peptide:

Pr(Xi|D) = 1−
∏

j:(i,j)∈E′

(

1− s′j
)

When degenerate peptides are encountered, ProteinProphet partitions each peptide score s′j

among its adjacent proteins:

s′′i,j = wi,js
′
j

∑

i:(i,j)∈E′

wi,j = 1

Then these partitioned peptide scores s′′ are used as if there is no degeneracy:

Pr(Xi|D) = 1−
∏

j:(i,j)∈E′

(

1− s′′i,j
)

Given the protein posteriors, the peptide scores are partitioned so that the size of the partition

associated with each protein is proportional to that protein’s posterior:

wi,j ∝ Pr(Xi|D)

Because the sum of weights for each peptide must sum to unity, the proportion constant can be

removed thus:

wi,j =
Pr(Xi|D)

∑

i′:(i′,j)∈E′ Pr(Xi′ |D)

13

∀(i, j) ∈ E′, wi,j ← 1

while convergence is not reached do

∀j, s′′i,j ← wi,js
′
j

∀i,Pr(Xi|D)← 1−∏j:(i,j)∈E′

(

1− s′′i,j

)

∀(i, j) ∈ E′, wi,j ← Pr(Xi|D)/
∑

i′:(i′,j)∈E′ Pr(X ′
i|D)

end while

Finally, the protein posterior estimates ∀i, Pr(Xi|D) and the partition weights ∀(i, j) ∈
E′, wi,j are iteratively updated in a batch-wise manner, until convergence is reached:

As described, this scheme treats each partitioned peptide score as exact independent evidence

to an adjacent protein. For this reason, a single high-scoring non-degenerate peptide j may

single-handedly result in a prediction that the adjacent protein i is present. This protein would

be given the same posterior as a protein with several high-scoring peptides:

s′j ≈ 1

{i′ : (i′, j) ∈ E′} = {i}

Pr(Xi|D) = 1−
∏

j′:(i,j)∈E′

(

1− s′′i,j′
)

= 1−
(

1− s′j
)

≈ 1

The creators of ProteinProphet make a useful observation: among high-scoring peptides,

there are fewer incorrect peptide identifications for peptides associated with proteins that have

evidence from several other peptides. ProteinProphet therefore computes a score called “NSP”

(“number of sibling peptides”) that summarizes other peptide evidence for a particular protein

i adjacent to peptide j:

NSPj =
∑

j′ 6=j:∃i,(i,j′)∈E′

s′j

14

These NSP values are binned to estimate a new peptide score conditional on the NSP bin:

Pr(Yj |Dk(j), bin(NSPj) = a) ≈ s′′′j =

Pr(Yj |Dk(j)) Pr(bin(NSPj) = a|Yj)
∑

yj
Pr(Yj = yj |Dk(j) Pr(bin(NSPj) = a|Yj = yj)

where ProteinProphet approximates the true peptide posteriors with the peptide score: Pr(Yj |Dk(j)) ≈
s′j . The NSP probabilities are estimated by taking the ratio of expected numbers of present pep-

tides in each NSP bin.

Pr(bin(NSPj) = a|Yj) ≈
∑

j:bin(NSPj)=a s
′′′
j

∑

j s
′′′
j

Finally, the use of NSP is extended to treat each degenerate peptide as several partitionied

peptides, one for each adjacent protein. The peptide scores conditioning on this new NSP score

NSP ′ for each protein and peptide will be denoted s
(IV)
i,j = Pr(Yj |Dk(j), NSP i

j
′
)

NSP i
j

′
=

∑

j′ 6=j:(i,j′)∈E′

s′′i,j

Pr(bin(NSP i
j

′
) = a|Yj) ≈

∑

i

∑

j:bin(NSP i
j

′

)=a
wi,js

(IV)
i,j

∑

i

∑

j wi,js
(IV)
i,j

The final algorithm is as follows:

When posterior protein estimates Pr(Xi|D) are given by any method, some threshold τX is

used to choose the final set of accepted proteins:

x∗ = {i : Pr(Xi|D) > τX}

15

∀(i, j) ∈ E′, wi,j ← 1

while convergence is not reached do

∀(i, j) ∈ E′, compute s
(IV)
i,j

∀i,Pr(Xi|D)← 1−∏j:(i,j)∈E′

(

1− wi,js
(IV)
i,j

)

∀(i, j) ∈ E′, wi,j ← Pr(Xi|D)/
∑

i′:(i′,j)∈E′ Pr(X ′
i|D)

end while

Scaffold Scaffold [27] employs a novel approach to the problem of spectral degeneracy to

perform inference on the observed graph G′. When a spectrum matches multiple peptides, then

only the peptides with scores approximately equal to the top-scoring peptide are kept. These

remaining peptides are grouped together for that spectrum, creating a “peptide group” with a

score equal to the scores of the approximately equal scores of the PSMs from that spectrum and

the peptides it contains.

Scaffold resolves peptide degeneracy using a greedy method. Proteins are assigned peptide

groups that are not adjacent to any other proteins. The protein scores are equal to the sum of

the scores of the assigned peptide groups. Then, degenerate peptide groups (i.e. peptide groups

containing peptides ajdacent to multiple proteins) are assigned to the protein with the highest

protein score. This process is repeated until no more peptide groups can be assigned, and these

ranks are used to represent the belief that a protein is present. The resulting graph with edges

connecting proteins to their assigned peptide groups is processed using ProteinProphet, but with

no weighting of peptide groups.

In Scaffold, proteins are first grouped using standard protein grouping, but proteins may also

be grouped if the sum of the scores of the peptides they do not share is lower than 0.95. The

Occam’s razor principle is used to discard proteins that don’t have unique peptide evidence. In

an identical manner to ProteinProphet, the present set of proteins x∗ is found by applying some

threshold to the sorted list of protein posteriors.

EBP The EBP method [24] is another probabilistically phrased and motivated method, but

is ultimately a complex numerical heuristic similar to ProteinProphet. Like ProteinProphet,

EBP operates on the observed graph G′. Initially, the EBP method removes spectra degneracy

16

using the same method as ProteinProphet, and computing Pr(Yj |Dk(j)) ≈ s′j = maxk sj,k.

EBP partitions the problem of protein identification into two parts. First, the set H consists of

proteins that are either present or homologous to a present protein. Second, the set X ⊂ H

consists of proteins that are present in the sample.

Proteins in H must be adjacent to at least one present peptide. Membership in H is

calculated using a Poisson distribution to estimate the probability complement to the event that

peptide adjacent to the protein is truly present. Membership in X is calculated conditional

on membership in H using a weighting scheme similar to ProteinProphet; each weight, where
∑

iwi,j = 1, represents the probability that a present peptide j originated from protein i.

In a manner very similar to ProteinProphet’s NSP score, EBP computes an approximate

abundance estimate vi for each protein. The abundance estimates are computed as the total

sum of weighted peptide scores associated with a protein:

vi =
∑

j:(i,j)∈E′

wi,js
′
j

The abundance estimates are thresholded into abundance class bins ai = bin(vi). For each

abundance class bin, there is a corresponding set of parameters θa = (Na, τa, na, γa, κa, λa)

with the following meanings:

Variable Meaning

Na Number of proteins in bin a

τa Total length of proteins in bin a

na

Number of peptide matches to pro-

teins in bin a

γa
Proportion of proteins in bin a that

are in H

κa
Total length of proteins in bin a and

in H

λa

Number of peptide matches in bin

a that are correct

17

These parameters, along with w, are used to sequentially compute estimates of the following:

a|w, ∀js′j
Pr(Hi|D, θ, a)

Pr(Xi|Hi, D, θ, a, w)

θ|∀iPr(Hi|D, θ, a)

w|∀i,Pr(Xi|D)

The value a is updated as stated above by first computing vi|w and then thresholding it into

the appropriate bin. The probability Pr(Hi|D, theta, a) is estimated by modeling the number of

correct peptide identifications matching a protein i ∈ H as a Poisson process. The parameters of

this Poisson process are defined by the parameters in the appropriate bin θai , and by a heuristic

value e
√

log(|{j:(i,j)∈E}|), an estimate of the proportional probability that the highest-scoring

random match is to one of the peptides adjacent to i. A value proportional to the conditional

probability that i /∈ H is estimated using the estimated prior probability that i /∈ H, the product

of probabilities that all peptides observed are incorrect identifications and the probability that

the observed number of peptides would be produced by the Poisson distribution:

Pr(¬Hi|D, θ, a) ∝
(

1− γai
)

×
∏

j:(i,j)∈E′

(1− s′j)×

Pr

(

|{Yj : (i, j) ∈ E}| = |{j : (i, j) ∈ E′}| ||{Yj : (i, j) ∈ E}| ∼ Poisson

(

e
√

log(|{j:(i,j)∈E}|)λai

κai

))

Similarly, a value proportional to the probability that i ∈ H can be estimated by summing

over outcomes with a nonzero quantity m of correct peptides identifications. The resulting sum-

mation terms will consist of two Poisson probabilities (one for the correct peptide identifications,

and the other for the inforrect peptide identifications) multiplied by the probability that exactly

that many peptides are correct matches. The latter probability is estimated by summing over

all possible subsets of exactly m present peptides adjacent in G′ to i:

18

Pr(|{j : (i, j) ∈ E′}| = m|D) =
∑

|{yj :(i,j)∈E′}|=m

∏

j:(i,j)∈E′

s′jyj + (1 − s′j)(1 − yj)

The probability that a protein is truly present in the sample given that it is adjacent to a

truly present peptide is computed by marginalizing out the variable Hi; this marginalization only

takes one step because the set X ⊂ H:

Pr(Xi|D, θ, a) =
∑

hi

Pr(Xi|Hi = hi, D, θ, a) Pr(Hi = hi|D, θ, a)

= Pr(Xi|Hi, D, θ, a) Pr(Hi|D, θ, a)

When computing Pr(Xi|Hi, D, θ, a), the method used is nearly identical to the method

used to compute Pr(Xi|Hi, D, θ, a); the difference is that in computing Pr(Xi|Hi, D, θ, a) the

weighted value s′′ is used in place of all instances of s′.

The entire iterative estimation process is repeated until the estimated values appear to

converge. The EBP method is not demonstrated to be a true EM method, despite its probabilistic

motivation and description; iterative estimation of posteriors, weights, and other parameters

is not equivalent to iteratively maximizing the expectation of the full protein configuration

likelihood.

The authors don’t state an explicit procedure used for updating w; instead, they indicate

that the greatest weight must be given to the protein with the highest current posterior estimate.

Presumably, the authors use the same procedure as ProteinProphet for updating w. The present

set of proteins x∗ is found by applying some threshold to the sorted list of protein posteriors. The

authors suggest that a combinatorial function would allow extension to replicate experiments by

requiring that the protein be present in a certain number of those experiments.

PANORAMICS The PANORAMICS method [8] similarly uses the observed graph G′. First,

peptide scores are normalized using parameters that must be established from a known data set.

19

Then, proteins are grouped and peptides that produce indistinguishable theoretical spectra are

merged. After that, spectral degeneracy is removed by keeping only the edge to the highest-

scoring peptide. Peptide probabilities are estimated by estimating the probability that a peptide

is absent; the chances a peptide is absent will be computed as the probability that all PSMs

containing that peptide are absent by taking the product over the complements of their scores:

s′j = 1−
∏

k

1− sj,k

If Xj
i

′
denotes the event that peptide j is present as a result of the present protein i, then

the probability that protein i is present and the probability that peptide j is present is given

using a formula similar to the unweighted formulation of ProteinProphet:

Pr(Xi|D) = 1−
∏

j:(i,j)∈E′

1− Pr(Xj
i

′|D)

s′j ≈ Pr(Yj |D) = 1−
∏

i:(i,j)∈E′

1− Pr(Xj
i

′|D)

Finally, by assuming that the probability of observing any peptide given that an adjacent

protein is present depends only on the peptide, the probability of the event Xj
i

′
can be rewritten:

Pr(Xj
i

′|D) = Pr(Xi|D) Pr(Yj |∃i : (i, j) ∈ E′)

By rephrasing Xj
i

′
in this way, it is possible to redefine the posterior protein and peptide

probabilities:

Pr(Xi|D) = 1−
∏

j:(i,j)∈E′

1− Pr(Xi|D) Pr(Yj |∃i : (i, j) ∈ E′)

s′j = 1−
∏

i:(i,j)∈E′

1− Pr(Xi|D) Pr(Yj |∃i : (i, j) ∈ E′)

Values of Pr(Xi|D) and Pr(Yj |∃i : (i, j) ∈ E′) that are consistent with these equations are

found using the Newton-Raphson method. A present set of proteins x∗ is found by applying

some threshold to the sorted list of protein posteriors.

20

1.2.3 Bayesian methods

Hierarchical Statistical Model The hierarchical statistical model [29] assumes that D ⊥⊥
X|Y and generatively models the process by which proteins create spectra to perform inference

on G′. Spectral degeneracy is eliminated by keeping only the edge incident to the peptide with

the highest PSM score for any spectrum.

First, the model assumes an independent and identically distributed (iid) prior for all proteins:

Pr(Xi) = γ. Next, the authors model the process by which a known set of proteins creates a

set of peptides as independent processes from each adjacent protein in G′. Their model uses

different parameters to model the emission of peptides resulting from different cleavages of that

protein; a specific cleavage indicates that the enzyme cut where expected, while a nonspecific

cleavage indicates that the enzyme would have to cut at an unexpected location.

Pr(Yj |X) = 1−
∏

i:(i,j)∈E′

1− αi,j

where

αi,j =

α′
N one nonspecific cleavage

α′
S one specific cleavage

α′
NN two nonspecific cleavage

α′
NS one specific and one nonspecific cleavage

α′
SS two specific cleavage

The probability of a correct PSM match given the associated peptides is likewise calculated

using Z as a random variable that indicates whether a PSM match is correct:

Pr(Zj,k(j)|Yj = yj) =

δ yj = 1

0 else

The authors also model the distribution of PSM scores as a mixture of the PSM score

distributions from correct and incorrect PSM matches with mixing proportion λ, where q are

factors that influence the score:

s ∼Mixture({fcorrect(q), fincorrect(q)}, λ)

21

These likelihoods must be defined in order to perform protein inference. In practice, they are

defined as parameterized distributions, and the parameter estimates are made using a separate

data set.

Lastly, the probability that the number of peptide hits for present proteins is greater than

some threshold m is modeled using parameters ρ1 and ρ0:

Pr(|{i : (i, j) ∈ E′}| > m |Xi = xi) = ρxi

1 ρ¬xi

0

Then, approximate maximum likelihood estimates (MLEs) of the parameters θ = (γ, α, δ, λ, ρ1, ρ0)

are computed using EM with hidden variablesX, Y , and Z. Finally, using the estimated θ values,

the posterior probabilities are estimated for proteins:

Pr(Xi|D) ≈ Pr(Xi|θ, s,G)

These posteriors are thresholded to produce a present set of proteins x∗.

Nested Mixture Model The nested mixture model approach [17] to protein identification

transforms G′ by copying degenerate peptides so that each adjacent protein is adjacent to its

own unique copy of the peptide and the spectra adjacent to the peptide. Spectral degeneracy is

also removed by keeping only the highest-scoring edges for each spectrum. This transformation

ensures the graph G′ is a tree. Because each peptide can only be associated with a single

protein, let i(j) denote the protein associated with peptide j.

The model assumes an iid prior for all proteins: Pr(Xi) = γ. All peptides adjacent to absent

proteins are assumed to be absent, and the peptides adjacent to present proteins are drawn from

a mixture model of present and absent peptides:

Pr(Yj |Xi(j) = xi(j)) =

α xi(j) = 1

0 else

The number of peptides adjacent to present and absent proteins are of known distributions

f1 and f0, respectively:

|{j : (i, j) ∈ E′}| |Xi = xi ∼ f(xi|θf)

22

f(xi) =

f1(θf) xi = 1

f0(θf) else

In a similar manner, the distributions of PSM scores containing present and absent peptides

are also modeled using distributions g1 and g0, respectively:

Sj(k),k |Yj(k) = yj(k) ∼ g(yj(k)|θg)

g(yj(k)) =

g1(θg) yj(k) = 1

g0(θg) else

The distributions f and g are parameterized by θf and θg, respectively. Because the trans-

formed graph G′ is a tree, the peptides are conditionally independent of one another given the

associated protein. In a similar manner, the scores are conditionally independent of one another

given the associated peptide. The likelihood can then be computed:

Pr(D|X = x, θ) =

∏

i

[

Pr(m = |{j : (i, j) ∈ E′}| |m ∼ f(xi, θf))

∑

y

∏

j:i=i(j)

[

Pr(Yj = yj |Xi = xi)

∏

k:j=j(k)

Pr(Sj,k = sj,k|Sj,k ∼ g(yj |θg))
]]

=
∏

i

[

Pr(m = |{j : (i, j) ∈ E′}| |m ∼ f(xi, θf))

∏

j:i=i(j)

[

∑

yj

Pr(Yj = yj |Xi = xi)

∏

k:j=j(k)

Pr(Sj,k = sj,k|Sj,k ∼ g(yj |θg))
]]

Similarly, the likelihood constant can be computed and normalized out by summing over all

protein states in the joint probability:

23

∑

x

Pr(D|X = x, θ) Pr(X = x) =

∏

i

[

∑

xi

Pr(Xi = xi)

Pr(m = |{j : (i, j) ∈ E′}| |m ∼ f(xi, θf))

∏

j:i=i(j)

[

∑

yj

Pr(Yj = yj |Xi = xi)

∏

k:j=j(k)

Pr(Sj,k = sj,k|Sj,k ∼ g(yj |θg))
]]]

The EM algorithm is used to compute approximate MLE estimates of the parameters θ =

(γ, α, θf , θg). Posteriors for each protein are computed and these posteriors are thresholded to

compute the set of present proteins x∗.

MSBayes MSBayes [18] is takes a novel approach to protein inference; a complex, static model

of peptide detectability is used to model the mass spectrometry process for the entire graph G,

rather than for the observed graph. The best peptide match for each spectrum determines the

peptide score sj ; peptides that are not in the observed graph are given scores of zero.

In MSBayes, each protein has an independent prior Pr(Xi|D) = γ; the value of γ is either

0.5 (a uniform prior), or chosen using prior information about the number of proteins in the data

set. The peptide scores are assumed to comprise the data, which are conditionally independent

of the proteins given the peptides. Each peptide is assumed conditionally independent of other

peptides given the proteins. Likewise, scores are assumed to be conditionally independent of

24

each other given the peptide set:

Pr(D|X = x) = Pr(S = s|X = x)

=
∑

y

Pr(S = s|Y = y) Pr(Y = y|X = x)

=
∑

y

∏

j

Pr(Sk(j) = sk(j)|Yj = yj) Pr(Yj = yj |X = x)

=
∑

y

∏

j

Pr(Sk(j) = sk(j)|Yj = yj) Pr(Yj = yj |X = x)

Pr(Yj = yj |X = x) = 1−
∏

i:(i,j)∈E

1− xiαi,j

Pr(Sk(j) = sk(j)|Yj = yj) =

Pr(Yj = yj |Sk(j) = sk(j)) Pr(Sk(j) = sk(j))

Pr(Yj = yj)

where Pr(Yj = yj |Sk(j) = sk(j)) is estimated by PeptideProphet [14]. The peptide emission

probabilities αi,j are estimated using a static predictor of peptide detectability. This detectability

predictor [34] is composed of a neural network that uses 175 features of each protein-peptide

pair to predict whether a peptide will be observed given that an adjacent protein is present. The

parameters of this model are trained using a “protein standard,” a small data set composed of

a known set of proteins that have been biochemically purified.

Lastly, Markov chain Monte Carlo (MCMC) is used to jointly sample from the space of

proteins and peptides and compute protein posteriors and a MAP protein set as follows:

The posterior of each protein can be estimated by computing the frequency of iterations

for which that protein is present in the configuration x. These posteriors are thresholded to

estimate the present set of proteins x∗. Alternatively, the MAP protein and peptide set can be

computed by storing the joint configuration that results in the highest proportional posterior.

This MAP protein set can be treated as the set of present proteins:

x∗ = xMAP

25

x, y ← some configuration : Pr(D,X = x, Y = y) > 0

while convergence is not reached do

bx ← random({i1, i2, . . .} : |bx| = u

by ← random({j1, j2, . . .} : |by| = v

Denote X ′ = {Xi : i ∈ bx}
Denote Y ′ = {Yj : j ∈ by}
∀x′∀y′, px′,y′ ←

∝ Pr(X ′ = x′, Y ′ = y′|∀i /∈ bxXi = xi, ∀j /∈ byYj = yj , D)

Sample an x′, y′ proportional to px′,y′

∀i ∈ bx xi ← x′i

∀j ∈ by yj ← y′j

end while

1.3 Comparison of existing approaches

In the publications originally presenting these methods, some are compared against other existing

approaches. This section evaluates each comparison and evaluates these methods relative to

each other. Table 1.2 depicts the analysis of each published comparison between a pair of

methods. For each method, both the accuracy demonstrated in the original publication, as well

as the computational cost required to apply it to large, biologically interesting data sets are used

for evaluation.

The validity of the published evaluation of each pair of methods is also considered. Tradi-

tionally, decoy database methods have been used to evaluate mass spectrometry-based protein

identifications [6]. This appraoch introduces proteins into the protein database that are known

to be absent; these absent proteins, known as “decoys,” may come from a species known not

to contribute to the sample, or may be generated by shuffling or reversing the original protein

database. The proteins comprising the original protein database (before decoys are introduced)

are called “target” proteins. The decoy proteins can be used to estimate the FDR of a given

set of protein identifications; if decoy proteins are favored no more and no less than absent

targets, and if the number of decoys and targets are equal, then for each decoy protein found

26

in a predicted present protein set x∗, it is expected that one incorrect target protein in x∗ is

also present. This target-decoy approach makes assumptions that are known to be incorrect

regarding the target and decoy databases, which result in several caveats to using it to estimate

the FDR.

Below is a detailed description of the caveats to the published comparisons between pairs of

methods, as well as the outcome of the competition to produce an analysis of each method’s

accuracy. Overall, this analysis of a method’s accuracy, along with the method’s efficiency

and compuational scalability, is used as criteria to predict and evaluate its utility for identifying

proteins in large data sets from complex protein mixtures.

In [38], IDPicker is compared to the one- and two-peptide rules using experiments from three

data sets: a protein standard containing 49 proteins, proteins from yeast cells, and proteins

from human. For each data set, the authors choose a peptide threshold τY by controlling the

peptide FDR estimated using a decoy database. The IDPicker method substantially increases

the specificity of the method, while slightly lowering the sensitivity. It is trivial to observe that

IDPicker will always select a subset of the proteins chosen by the one- or two-peptide rule when

using the same peptide threshold for both methods; therefore, IDPicker can never have superior

sensitivity, and so it is appropriate to use a more lax peptide threshold for IDPicker in order to

compare it the one- and two-peptide rules. Even so, it is practically and theoretically clear that

IDPicker will result in substantially greater specificity, especially in instances where there are

many degenerate peptides. Each degenerate peptide adjacent to a present protein has a large

chance of receiving a high score; using the one- and two- peptide rules, all proteins adjacent to

that degenerate peptide will be included in x∗, even if only one of them was present.

Furthermore, degenerate target peptides are much more likely to be adjacent to target

proteins; the expected scores of target peptides, which consist of a mixture of present and

absent proteins, will be higher than the expected score of decoy peptides, which are necessarily

absent. Target protein identifications are often used as a surrogate for true positive protein

identifications when there is no ground truth regarding the set of present proteins. Therefore,

methods like the one- and two-peptide rules are more likely to include absent target proteins

rather than decoy proteins, resulting in an overestimated sensitivity and underestimated FDR.

Understandably, the IDPicker method is less efficient than the computationally trivial one-

27

O
n
e-

an
d
tw
o-
p
ep
ti
d
e

ID
P
ic
ke
r

P
ro
te
in
P
ro
p
h
et

E
B
P

P
A
N
O
R
A
M
IC
S

H
ie
ra
rc
h
ic
al

N
es
te
d
M
ix
tu
re

M
S
B
ay
es

One- and two-peptide
Accuracy ����

Scalability ����

IDPicker
Accuracy ����

Scalability ����

ProteinProphet
Accuracy ���� ���� ���� ���� ����

Scalability ���� ���� ���� ���� ����

EBP
Accuracy ����

Scalability ����

PANORAMICS
Accuracy ����

Scalability ����

Hierarchical
Accuracy ���� –

Scalability ���� ����

Nested Mixture
Accuracy ���� –

Scalability ���� ����

MSBayes
Accuracy ����

Scalability ����

Table 1.2: Published method comparisons. Published comparisons between methods are an-

alyzed and evaluated. The entries in a row depict the evaluations of the labeled method relative

to other methods from each column. Each cell categorizes the outcome of a comparison between

two methods. The various symbols indicate whether the row method performed much worse

(����), slightly worse (����), essentially the same (����), slightly better (����) or

significantly better (����) than the column method. For each pair of methods, the accu-

racy and the scalability are compared. Accuracy evaluates the ability of a method to identify

many present proteins at a low FDR when applied to an unseen data set. Scalability evaluates

the computational efficiency of a method and whether it can be applied to large, biologically

interesting data sets.

28

and two-peptide rules. Solving minimum set cover is NP-complete [13]; however, like many

NP-complete problems, it can often be solved efficiently in practice, and when an exact solution

is inefficient, it can be approximated using established approaches.

ProteinProphet is one of the most popular and seminal protein identification methods, and

so many methods have been compared to it. In [24], the EBP method is compared to Pro-

teinProphet using several replicate experiments on a protein standard consisting of 18 purified

proteins [16]. Using two protein thresholds τX ∈ {0.9, 0.7}, EBP achieves a greater specificity

(one fewer decoy protein identified), but a lower sensitivity (one and two fewer present proteins

identified, respectively). Furthermore, EBP is shown to be conservative; the FDR estimated

computing the expected value of the complement of the posterior probabilities of proteins in-

cluded in x∗ [5] is substantially higher than the true FDR. For this reason, a fairly high protein

threshold would be required to achieve greater sensitivity. This higher protein threshold is likely

to increase the FDR. For this reason, it is concluded that the method has not been demon-

strated to be superior to ProteinProphet. EBP may even lower the interpretability of the protein

posteriors due to its conservative estimates.

The iterative procedures underpinning EBP are very similar to ProteinProphet and are mostly

very efficient; however, when estimating the probabilities Pr(Hi|D, θai) and Pr(Ti|D, θai , w),

there is a sum over all subsets of observed peptides adjacent to a protein. This term requires

summing over the power set, which grows exponentially with the number of observed peptides

adjacent to any protein. Unless this sum of products can be transformed into a product of sums

using dynamic programming or some other procedure, it will become prohibitively inefficient

to perform on data sets from complex organisms like human, where the number of peptides

adjacent to a protein can be very large.

In [8], ProteinProphet is compared with PANORAMICS on a data set from the plant Ara-

bidopsis thaliana. The authors calibrated parameters for their peptide score in a rigorous manner

using a protein standard; the protein standard is different enough from the A. thaliana data set

that these parameter estimates are unlikely to provide an unfair advantage to their method.

The authors then search the data against two different databases. The first database is the A.

thaliana proteome (targets) combined with reversed copies of every target protein. The second

database is the NCBI NR database, which contains over 3.1 million proteins. For both searches,

29

the protein threshold τX was varied to produce a receiver operating characteristic (ROC) curve,

which plots the number of true positive protein identifications against the number of false pos-

itive protein identifications. When the spectra were searched against the A. thaliana data set,

ProteinProphet identifies more target proteins from the A. thaliana proteome in the low FDR

region. In general, ProteinProphet performs very well at low FDR thresholds, and it is common

to see comparisons in which competing methods outperform ProteinProphet only once the FDR

becomes higher.

When these spectra are searched against the combined NCBI NR (target) and NCBI NR

reversed (decoy) database, PANORAMICS identifies many more targets than ProteinProphet

in the moderate FDR region. The authors suggest that this increased number of identified

targets indicates an increased sensitivity compared to ProteinProphet; however, the paper does

not indicate whether these NCBI NR proteins are actually from A. thaliana. The demonstrated

tendency to distinguish targets from decoys, regardless of species, is actually quite detrimental; in

practice, the organisms producing the sample data are almost always known, and the challenge

is to separate and distinguish the present target proteins from the absent target proteins. A

preference for target proteins, regardless of species, can be the result of degenerate peptides

from a single present protein that allow several other adjacent proteins to be included in the

set x∗. For this reason, PANORAMICS appears to be slightly less reliable than ProteinProphet,

which includes fewer and fewer target proteins as the protein threshold τX is lowered.

The principal strength of the PANORAMICS method is its elegant simplicity, which casts

the protein identification problem as a numeric equation; approaches to numerically solve such

equations are extremely efficient. Their numeric solution is not demonstrated to be unique, but

it is an appealing heuristic.

In [29], ProteinProphet is again compared, this time to the hierarchical model. The two

methods are both used to analyze a data set consisting of 23 peptides together with 12 purified

proteins. The proteins are enzymatically digested, and the resulting peptide mixture is treated

as containing 35 present “proteins”; the 23 peptides are treated as single-peptide proteins.

The authors use the two methods to identify peptides at different peptide thresholds, and they

demonstrate that ProteinProphet has a slightly greater sensitivity at a low FDR and a lower

sensitivity at a higher FDR. They do not perform a similar comparison for proteins; instead, they

30

choose a single cuttoff at τX = 0.8 and show that ProteinProphet and the hierarchical model

identify the same number of present proteins and decoy proteins. The ad hoc choice of protein

threshold is uninformative, especially given the tendency of ProteinProphet to outperform other

methods in the low FDR region.

Unfortunately, the hierarchical model computes a sum over all peptide and protein config-

urations, and the paper does not discuss the resulting computational cost. Depending on the

implementation, the cost of computing posteriors will grow with either the exponential or the

factorial of the number of variables (or the number of proteins, if the sum of products over

peptides is transformed into a product of sums) in a connected subgraph; in practice, this poor

scalability makes the hierarchical model computationally prohibitive for so many data sets that

the method is not practically useful.

In [17] the nested mixture model is compared to ProteinProphet on a yeast data set using

an unspecified decoy database of artificial proteins. The nested mixture model has slightly

higher sensitivity than ProteinProphet at low FDR, which is fairly impressive. Overall, the

method performs similarly to ProteinProphet; however, the utility of the nested mixture model

is low, because the treatment of degenerate peptides (essentially assuming that no peptides are

degenerate) will cause the model to perform poorly on data sets from complex organisms such

as human, whose graphs feature substantial peptide degeneracy. Furthermore, the treatment of

degenerate peptides resembles the one- and two-peptide rules, and may result in an overestimate

of sensitivity, because target peptides are more likely to have higher scores and target proteins are

more likely to share degenerate peptides with other target proteins. Also, like the one- and two-

peptide rules, the independent treatment of peptides makes this method very computationally

efficient.

In [18], ProteinProphet is compared to MSBayes on a protein standard composed of 49

proteins [38] using a detectability model with hundreds of parameters chosen from another

replicate of the same data set. MSBayes is shown to have a higher specificity but a lower

sensitivity using a protein threshold of τX = 0.5. Considering that the threshold is so lax,

the fact that ProteinProphet is still more specific indicates that the MAP protein set is very

permissive. Furthermore, the fact that so many parameters for the detectability model are

estimated on essentially the same data set makes the results less meaningful; even though

31

the detectability model is shown to perform fairly well using parameters estimated from other

data sets [34], it is highly probable that even fairly small changes in the quality of the peptide

detectability estimates may result in large changes in the set of identified proteins.

MSBayes is not as efficient as ProteinProphet, but this may be because MSBayes is im-

plemented in an interpreted language. The underlying MCMC (python) procedure could be

reimplemented in a more efficient, compiled language to be roughly the same speed as Protein-

Prophet. The MCMC procedure jointly samples protein and peptide states, despite the fact that

the model permits peptides to be conditionally independent of each other given the protein set.

Using this conditional independence would permit the peptides to be marginalized out in linear

time given a sampled protein state, dramatically reducing the space that needs to be sampled.

Furthermore, d-separation can be exploited to ensure that a block sampling chooses protein

blocks so that every protein in the block shares a peptide with another protein in the block.

Otherwise, a block will be d-separated by proteins whose states have been sampled, and can be

sampled independently, rather than jointly.

32

Chapter 2

FIDO: A NOVEL BAYESIAN APPROACH TO PROTEIN INFERENCE

In this chapter, a novel Bayesian method for computing posterior protein probabilities is

presented. The approach, called “Fido,” (an acronym of “fast identification with optimization”)

is motivated by a desire to derive a model using a few relatively simple assumptions, but also to

create accompanying algorithms that make computation very efficient. Such a model will permit

evaluation of the assumptions and allow us to systematically make improvements in a manner

that is difficult with many current approaches. The Fido model uses only three parameters, which

can be easily estimated using the same data set used for identifying proteins. With respect to

the peptide deneracy problem, the Fido model rewards protein sets that contain independent

evidence in addition to degenerate peptides. In particular, the model allows a protein with strong

independent supporting evidence to “explain away” supporting data that is shared with other

proteins. Thus, the Fido method automatically apportions information from degenerate peptides

during the marginalization procedure, rather than requiring an ad hoc adjustment.

Using this model, a series of three mathematical transformations are introduced; these trans-

formations alter the graph and substantially increase the computational efficiency of computing

posterior probabilities, while still recognizing peptide degeneracy. The resulting algorithm is

mathematically equivalent to the result achieved by marginalizing [33], the process of com-

puting every possible set of present proteins and evaluating their net contribution. In contrast

to sampling, marginalizing yields an exact, closed-form solution in a finite amount of time.

Naively marginalizing would require enumerating every possible set of proteins, which is expo-

nentially complex and hence computationally infeasible even for small problems, but the opti-

mized marginalization procedure is significantly more efficient and computes the same result as

the naive approach. Using the Fido method, it is possible to compute discriminative and inter-

pretable posterior probabilities quickly, even on large data sets. This combination of efficiency

and rigor allows us to compute accurate and well-calibrated posterior probabilities quickly, and

33

lays the groundwork for more complex models and more optimized procedures.

2.1 Data sets

The Fido method is compared to ProteinProphet [21] on four data sets, yeast lysate [12], H.

influenzae lysate [21], the ISB 18 mix protein standard [16], and C. elegans lysate [10], and

compared to MSBayes [18] on one additional data set, the Sigma Aldrich 49 protein standard

[38]. These methods were chosen to compare to because they represent the state-of-the-art for

methods that can perform inference on graphs containing degenerate peptides. Each collection

of spectra was searched against a combined database of target and decoy proteins. For the

purposes of the analyses, when a protein identification method identifies a protein from the

database, that identification is considered a “true positive” or a “false positive,” depending

on whether the protein is a target or a decoy, respectively. It should be noted that treating

the targets as true positives is not perfectly correct, because the target database is actually

a mixture of true and false positives. Consequently, the empirical estimates of true positive

counts may be slightly inflated; however, because these estimates of the true positives are only

used as a relative comparison between methods, the slight bias introduced will not influence the

comparison. Summary statistics describing each data set are given in Table 2.1.

H. influenzae H. influenzae lysate was digested with trypsin and analyzed by LC-MS/MS

on an ESI-ITMS machine. The spectra were searched with SEQUEST [7] against a database

containing H. influenzae (targets) and human proteins (decoys). The resulting PSMs were scored

using PeptideProphet with a minimum peptide probability of 0.0.

Yeast Saccharomyces cerevisiae strain S288C were grown to mid log phase on rich media at

30◦C. The proteins were digested with trypsin and analyzed using data dependent acquisition

and LC-MS/MS, using an LTQ machine. The resulting spectra were searched using Crux [23]

against a database consisting of all yeast ORFs plus a shuffled version of each ORF. PSMs were

assigned probabilities by PeptideProphet using a minimum peptide probability of 0.05.

34

H. influenzae Yeast ISB 18 C. elegans Sigma 49

matched spectra 33350 35236 1.1x106 42091 32700

target proteins 1709 6734 34 23932 49

decoy proteins 88299 6734 1709 23932 31227

decoy database human shuffled H. influenzae reversed
human and

reversed human

Table 2.1: Data set sizes. The table lists, for the five data sets, the number of fragmentation

spectra produced, the number of proteins in the target and decoy databases, and the type of

decoy proteins used. All numbers are reported before any analysis was performed; Table 2.2

reports the number of proteins and PSMs that are actually matched and connected in the

bipartite graph. Proteins were counted using their unique accession numbers, so this is the true

size of the database and is invariant to redundancy or homology. The different decoy databases

are taken from existing publications of protein and peptide identification algorithms, and were

selected to demonstrate that the Fido method performs well regardless of the decoy database

used.

ISB 18 mix The ISB 18 protein data was created using proteins purchased from Sigma Aldrich.

This data set consisted of four prepared samples, which were analyzed on a variety of mass spec-

trometry machines with several technical replicates. The proteins were digested together using

trypsin, and in one of the four samples, digestion was aided by sonication. These peptides were

analyzed using LC-MS/MS on a variety of machines, including LTQ, LCQ Deca, Q-TOF, QS-

TAR, AGILENT XCT Ultra, Applied Biosystems ABI 4800, AppliedBiosystems 4700, and Ther-

mofinnigan LTQ-FT. The spectra obtained from each experiment were searched using SEQUEST

against a database containing these 18 proteins, a set of closely related homologs (obtained from

the authors), which are indistinguishable from or may have been purified with the 18 proteins,

possible contaminants, and a collection of H. influenzae proteins. PSMs were assigned proba-

bilities by using PeptideProphet with a minimum peptide probability of 0.05. The contaminant

proteins were not treated as present or absent, because they were identified using the Trans Pro-

teomic Pipeline (http://tools.proteomecenter.org/wiki/index.php?title=Software:

http://tools.proteomecenter.org/wiki/index.php?title=Software:TPP

35

TPP), which includes the ProteinProphet algorithm. The replicate experiments were analyzed in

two ways: individually, and after pooling all experiments together.

C. elegans C. elegans were grown to various developmental stages on peptone plates con-

taining E. coli. After removal from the plate, bacterial contamination was removed by sucrose

floating. The lysate was sonicated and digested with trypsin and subject to six technical repli-

cate LC-MS/MS analyses using LTQ machine and data dependent acquisition. The spectra were

searched against a database containing the target proteins, the C. elegans proteome and known

contaminants, as well as a reversed copy of every target protein. PeptideProphet was run using

a minimum PSM probability of 0.05.

Sigma 49 mix The Sigma 49 mixture was prepared using 49 human proteins from Sigma

Aldrich. The proteins were digested with trypsin and subjected to three replicate LC-MS/MS

analyses using a Thermo LTQ machine. The spectra were searched using MyriMatch16 [31]

against a database composed of all Swiss-Prot (54.2) proteins with the HUMAN as well as a

reversed copy of each protein. During the database search, any spectra that matched multiple

peptide sequences and that also received equal scores for these matches were excluded. The

remaining PSMs were scored using PeptideProphet and any PSMs with probability less than

0.05 were thrown out.

2.2 Results

2.2.1 A probability model for scoring candidate solutions

To compute the desired protein posterior probabilities, the tandem mass spectrometry process

is modeled using a generative Bayesian probability model. The Fido model follows directly from

a series of seven simple assumptions, which are illustrated in Figure 2.1 and described in detail

below. First, however, some terminology is introduced. A peptide is emitted by a protein if that

peptide was created by digesting a protein, retrieved by the precursor scan, and analyzed by the

fragmentation scan. A peptide is created by the noise model if the peptide was identified by the

fragmentation scan but the scan was not derived from that peptide.

http://tools.proteomecenter.org/wiki/index.php?title=Software:TPP

36

Figure 2.1: Assumptions. The assumptions of the model are illustrated graphically and num-

bered by their corresponding assumption numbers from Section 2.2.1. Solid arrows represent

dependencies. Peptides depend on the proteins and the noise model; present proteins emit asso-

ciated peptides with probability α, and peptides that are not created by associated proteins are

created by the noise model with probability β. Spectra depend exclusively on the best-matching

peptide. Proteins have identical and independent prior probabilities γ. The marked-out dashed

arrows depict dependencies that do not exist within the model.

Qualitatively, the assumptions underlying the Fido model are as follows (more rigorous and

complete quantitative descriptions of these assumptions are presented in the chapter “Quanti-

tative derivation of inference and graph transformations”):

• The process by which one peptide is retrieved from the precursor scan does not influence

the retrieval of other peptides from the precursor scan given the set of proteins in the

sample.

• The process by which a spectrum is created and observed does not influence the creation

and observation of other spectra given the set of peptides selected by the precursor scan.

• The event in which a sample peptide is generated from a present protein containing it

occurs with constant probability α. This event is independent of all other emission events.

Although the probability that a peptide is retrieved may depend on properties of the

peptide, the model can account for these variations by adjusting the probability of the

37

PSM. Adjusting the probability of a PSM is equivalent to adjusting the probability that

the peptide was retrieved from the precursor scan. These events are only observable in

conjunction, so it is not possible to distinguish between the event where a peptide is

retrieved from the precursor scan but its spectrum is mistakenly assigned and the event

where a peptide is not retrieved from the precursor scan and undergoes no fragmentation

scan.

• The event that a truly absent peptide (i.e. not created by an associated protein) is

erroneously observed occurs with constant probability β.

• The prior event that any protein is present in the sample occurs with probability γ. It

would be possible to later introduce a more complex prior, but doing so may increase the

runtime of the algorithm.

• The prior probabilities of all proteins are independent.

• Each spectrum depends exclusively on the peptide that it best matches and is paired with

to form a PSM.

The probability model that results from these assumptions is sufficient to compute the like-

lihood of a particular set of proteins given the the observed set of spectra, which is proportional

to the probability that these proteins would create the observed spectra:

L(X = x|D) ∝ Pr(D|X = x)

=
∑

y

∏

j

Pr(Dk(j)|Yj = yj) Pr(Yj = yj |X = x)

=
∑

y1

∑

y:y1

∏

j

Pr(Dk(j)|Yj = yj) Pr(Yj = yj |X = x)

=
∑

y1

Pr(Dk(1)|Y1 = y1) Pr(Y1 = y1|X = x)
∑

y:y1

∏

j 6=1

Pr(Dk(j)|Yj = yj) Pr(Yj = yj |X = x)

=
∏

j

∑

yj

Pr(Dk(j)|Yj = yj) Pr(Yj = yj |X = x)

38

whereX is the set of present proteins, Y is the set of present peptides, D represents the observed

spectra, and j is used to index the peptides. Both X and Y are random variables representing

the truly present protein and peptide sets; x and y are specific values taken on by these random

variables. The first equation above removes uncertainty from the unknown peptide set Y by

marginalizing over all possible peptide sets (i.e., all possible values Y can take on, which is

denoted by summing over y). For example, if the set of spectra match 10,000 distinct peptides,

then the enumeration over all possible values of y must consider 210,000 possibilities.

Values proportional to Pr(Dj |Yj = yj) are computed using PeptideProphet and Pr(Yj =

yj |X = x) using the model of peptide generation. This former is actually computed by an

intermediate step in the PeptideProphet algorithm and can be recovered by applying Bayes’

rule to PeptideProphet’s probability scores and prior probability estimates. The conditional

independence of peptides given proteins allows us to compute the sum over all peptide sets in

linear time (rather than exponential time), by transforming the sum into an equivalent product

over peptide indices. Essentially, the procedure between Equations (2) and (4) can be repeated

on the right sum in Equation (4) using a different peptide index. This operation can be continued

inductively on each successive sum, effectively unrolling the sum of products into a product of

sums. In the product of sums form, each sum has only two states (a particular peptide is

present or absent), so each term in the product is trivial, permitting the likelihood of a set of

proteins to be computed in linear time relative to the number of peptides. From a graphical

model perspective, once the set of proteins is specified, all of the PSMs are disconnected from

each other, making an independent graph for each PSM. The likelihood is thus computable by a

product over these independent graphs. A more complete derivation, as well as other derivations

used for the Fido model and optimizations, are provided in the chapter “Quantitative derivation

of inference and graph transformations.”

2.2.2 Computing posterior probabilities for each protein

By applying Bayes rule to the likelihood proportional to Pr(D|X = x) and marginalizing over

all possible protein configurations x, it is possible to compute a posterior probability for each

protein. This approach appears to be prohibitively expensive, because a naive implementation

39

(A) Partitioning (B) Clustering (C) Pruning

Figure 2.2: Three speedups. (A) The graph is partitioned into connected subgraphs (enclosed

by dashed boxes). Posterior probabilities can be computed individually for each connected sub-

graph. (B) Proteins with identical connectivity are clustered together. In this example, proteins

1 and 2 are clustered to more efficiently enumerate the power set. (C) Graph components joined

only by zero-probability peptides are separated by creating a copy of each of these peptides for

each subsection. This operation further divides existing partitions to create partitions containing

fewer proteins.

of this marginalization requires explicitly enumerating every possible set of proteins (a so-called

“power set”). The computational cost of enumerating this power set is exponential in the number

of proteins, making the naive implementation impractical for even small data sets. However,

in practice, it is not necessary to enumerate the power set of peptides, because peptides are

assumed to be conditional independent given the protein configuration; therefore, when a protein

set is specified, these assumptions permit marginalization over all peptide sets in linear time using

a single product.

In order to make computation of posterior probabilities computationally feasible for large data

sets, three graph-transforming procedures are introduced: partitioning, clustering, and pruning.

40

These procedures, illustrated in Figure 2.2, dramatically increase the efficiency of computing

posterior probabilities for the proteins. All of these procedures are described thoroughly in the

chapter “Quantitative derivation of inference and graph transformations.”

Speedup #1: Partitioning

In the Fido model, a protein is dependent on other proteins within connected subgraphs, but

not dependent on proteins that share no peptides with proteins in the connected subgraph. This

property is exploited to compute posterior probabilities for proteins in a subgraph by enumerating

over the power set of proteins in the subgraph. The original graph can be trivially partitioned

into connected subgraphs by performing depth-first search on the undirected graph. When a

specific digest, such as trypsin, is used, this transformation considerably decreases the number

of protein sets that need to be evaluated.

Speedup #2: Clustering

In the Fido probability model, it can be demonstrated that proteins with identical connectivity

can be clustered together to compute their posterior probabilities with greater efficiency (a more

thorough derivation is described in the chapter “Quantitative derivation of inference and graph

transformations”). In Figure 2.2, proteins 1 and 2 are indistinguishable; therefore, the case in

which protein 1 is present and protein 2 is absent has the same probability as the case in which

protein 1 is absent and protein 2 is present. Thus, these two proteins can be merged into a

single node (Figure 2.2B), which can occupy three distinct states: a state with both proteins

absent, a state with only a single protein present, and a state with both proteins present. The

state where a single protein is present must now be counted twice because there are two ways

for it to occur. Using this transformation, it is possible to enumerate the power set in three

steps rather than four. Generally, merging n proteins reduces the number of states that must

be enumerated from 2n to n+ 1.

41

Speedup #3: Pruning

Furthermore, it is proven that within a connected subgraph, any two partitions of proteins that

are only connected by peptides with a probability of zero can be transformed into two subgraphs

that do not connect to one another. These zero-probability peptides are often produced by

PeptideProphet when the best spectrum match for the peptide is a very poor match. Because

they are a special case, each zero-probability peptide implies two necessary events: first, the

peptide cannot be emitted by any protein, and second, the peptide cannot be created by the

noise model; for if the peptide were emitted by a protein or created by the noise model, it

would necessarily raise its probability above zero, resulting in a contradiction. When two protein

partitions within a subgraph are connected only through zero-probability peptides, then neither

partition may emit any of those zero-scoring peptides.

The pruning operation copies each zero-probability peptide so that each of these protein

partitions connects to its own copy; therefore, these necessary events remain the same, except

the event that the peptides are not created from noise is now counted twice instead of once,

because a copy has been added. This overcounting can be corrected easily, transforming the

original problem into two partitioned subproblems. A more thorough derivation is shown in the

chapter “Quantitative derivation of inference and graph transformations.”

In Figure 2.2C, proteins 4 and 5 are only connected by a zero-probability peptide. The only

possible events that would produce the observed data require that neither protein 4 nor 5 emit

the peptide and require that the peptide not be created by the noise model. Creating a copy

of the peptide for each of these proteins and then correcting so that the noise model is only

counted once will produce the same posterior probability for each protein.

Table 2.2 illustrates the effects of these three speed-ups on five different data sets. The first

three rows of the table indicate the size of the input graph, the next four rows list the size of the

corresponding search space initially and after each of the three graph transformations, and the

remaining row shows the runtime of the algorithm. In the most extreme case, H. influenzae, the

graph transformations reduce the size of the search space by nearly 10,000 orders of magnitude.

By reducing the theoretical complexity of the procedure, these graph optimizations lead to

efficient runtimes, as shown in the last row of Table 2. In comparison, ProteinProphet took

42

H. influenzae Yeast ISB 18 C. elegans Sigma 49

PSMs 29123 10390 21166 4944 23964

proteins 32748 3742 1777 4303 392

edges 60844 12202 21720 7332 24392

Log2# 32764.6 11495.6 1833.7 4316.3 407.6

Log2# PRT 935.2 90.4 71.6 40.0 92.3

Log2# PRT, CLST 72.6 46.96 71.6 16.2 92.3

Log2# PRT, CLST, PRUNE 18.3 46.96 31.4 16.2 16.9

Runtime 1.4s (0.1s) 1.6s (0.2s) 8.6s (4.3s) 1.3s (0.1s) 1.0s (0.1s)

Table 2.2: Utility of the Optimizations. The table lists, for the five data sets, the size of

the protein identification graph (using the combined target and decoy databases) in terms of

the number of PSMs (after identical peptides are merged), number of proteins, and number of

PSM-to-protein edges, as well as the log of the size of the full search space and the search space

after each of the three optimizations are successively applied. PRT indicates partitioning, CLST

indicates clustering, and PRUNE indicates pruning (using a theshold of 10−3). As before, the

proteins are counted by their unique accession numbers; however, peptides are counted using

their sequence, so degenerate peptides are only counted once. The final row lists the running

time necessary to compute the posterior probabilities for a fixed value of the parameters α,

β, and γ using a variable threshold and allowing for up to 218 marginalization steps for each

subgraph (using a single-core standard desktop computer). The first runtime listed is the total

execution time (including file I/O to read the data); the runtime in parentheses is the time

necessary to only run the marginalization procedure. The H. influenzae data has the highest

degree of peptide degeneracy, because it includes a human decoy database.

43

13.3s on the yeast data and 10.7s on the ISB 18 data. MSBayes took 2m23.5s on the Sigma

49 data. Due to lack of access to the proper files, it was not possible to time ProteinProphet

on the H. influenzae data.

Unfortunately, even after the transformations, the search space associated with the larger

data sets is still prohibitively large. In order to guarantee the efficiency of the Fido method on

large data sets, the original problem can be approximated by pruning low-scoring PSMs as if

they were zero-scoring PSMs; in practice, this approximation generally achieves great efficiency

with little error, because the likelihoods computed using PeptideProphet are hardly sacrosanct.

With this approximation, the pruning procedure creates subgraphs with many fewer proteins.

Because the user is only interested in using the smallest threshold that will sufficiently break

apart the connected subgraphs, this process is performed recursively and divide each subgraph

using a successively greater flooring threshold. This process is continued until the total number

of steps necessary for marginalization is less than a user-specified value. The result is that,

rather than choosing one strict threshold for the entire data set, the user can specify a permitted

computational complexity, and then different thresholds are employed to ensure that the method

is as efficient as the user requires.

Occasionally, it is necessary to apply the pruning procedure to a PSM with a larger probability.

In these cases, a collection of proteins are connected through a collection of high-scoring PSMs.

These cases are already known to be difficult; in the extreme case, when all PSMs have probability

1.0, this problem closely resembles the NP-hard minimal set coverage problem (except, in the

Fido method, marginalization requires that each permutation of present and absent protein

states must be considered). Fortunately, any error introduced by pruning will only distort the

probabilities of proteins connected in this way; therefore, accurate protein posteriors may be

achieved as long as these cases are relatively rare. Chapter “Quantitative derivation of inference

and graph transformations” shows the distribution of PSM probabilities that must be pruned to

achieve no more than 218 marginalization steps, and demonstrate that few pruned PSMs have

probabilities greater than zero. When such a PSM is pruned, the two partitions it joins are

approximated as being independent (even though they may not be). In these cases the Fido

method behaves similarly to the first iteration of ProteinProphet, by treating the peptides as

independent.

44

2.2.3 Comparison of the Fido method to ProteinProphet and MSBayes

A C++ implementation of the Fido method is evaluated using the five data sets described in

Materials and Methods. The source code of this implementation is publicly available (http://

noble.gs.washington.edu/proj/fido). Starting from the scored peptides, each method

computes a probability for each protein, and these probabilities are used to rank the proteins.

Groups of identically connected proteins are merged for evaluation, and are treated as a single

protein group. All references to the number of target proteins or decoy proteins identified at a

threshold or use these values in a calculation, each protein group is counted once, rather then

once for each protein it contains. Groups containing both targets and decoys are not counted in

evaluation; such groups are so infrequent that their treatment doesn’t visibly change the figures

presented.

From each ranked list of proteins, the method producing the ranked list is evaluated by

creating a receiver operator characteristic (ROC) curve, which plots true positive counts (i.e.,

the number of target proteins) as a function of false positive counts (the number of decoy

proteins). A curve is produced by varying the probability threshold above which a protein is

deemed to be present. Because the performance in the low false positive rate is particularly

interestin, the plot depicts the ROC curve out to 100 false positives along the x-axis. Each

ranked list of proteins is also evaluated using a calibration FDR plot, which plots the empirical

FDR as a function of the estimated FDR. The empirical FDR is calculated as the number of

decoys identified divided by the total number of proteins identified. The FDR is estimated from

posteriors by exploiting the fact that the probability that a protein is absent is equal to one minus

the posterior assigned to the protein; therefore, by assuming that the posterior probabilities are

independent, it is possible to estimate the FDR for any set of proteins by computing the expected

number of false positives (found by the number of proteins minus the sum of their posteriors)

divided by the number of proteins identified at the threshold. If the Fido method is perfectly

calibrated and if the empirical FDR estimate is accurate, then the empirical FDR and estimated

FDR should be equal at every threshold.

Figure 2.3 shows, for each data set, ROC curves for the Fido method and either Protein-

Prophet or MSBayes. Fido is compared against ProteinProphet for the first four data sets, and

http://noble.gs.washington.edu/proj/fido
http://noble.gs.washington.edu/proj/fido

45

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

T
ar

ge
ts

 Id
en

tif
ie

d

Decoys Identified

ProteinProphet
Our Method

Overlap
 0

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 20 40 60 80 100

T
ar

ge
ts

 Id
en

tif
ie

d

Decoys Identified

ProteinProphet
Our Method

Overlap

(A) H. influenzae (B) Yeast

α∗ = 0.16, β∗ = 0.00, γ∗ = 0.1 α∗ = 0.06, β∗ = 0.00, γ∗ = 0.7

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

T
ar

ge
ts

 Id
en

tif
ie

d

Decoys Identified

ProteinProphet
Our Method

Overlap
 0

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 20 40 60 80 100

T
ar

ge
ts

 Id
en

tif
ie

d

Decoys Identified

ProteinProphet
Our Method

Overlap

(C) ISB 18 (D) C. elegans

α∗ = 0.11, β∗ = 0.05, γ∗ = 0.1 α∗ = 0.01, β∗ = 0.00, γ∗ = 0.7

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 20 40 60 80 100

T
ar

ge
ts

 Id
en

tif
ie

d

Decoys Identified

Bayesian Sampling
Our Method

Overlap

(E) Sigma 49

α∗ = 0.36, β∗ = 0.05, γ∗ = 0.9

Figure 2.3: ROC plots. For each data set, the plot shows the number of true positives as

a function of the number of false positives. The Fido method is compared to ProteinProphet

in (A)–(D) and compared to the ABLA model of MSBayes in (E). The figure also shows the

overlap between the sets of true positive proteins found at each false positive level. The Fido

method is run on each data set with the same set of parameters used for the same data set in

Figure 2.4.

46

MSBayes for the Sigma 49 protein mixture. ProteinProphet has previously been demonstrated

to perform similarly to MSBayes on this data set [18]. Fido is not compared against MSBayes

on any other data sets, because the model it employs was trained to be used for the Sigma

49 protein mixture; hence, attempting to compare performance on another data set would be

unfair. The ISB 18 protein data set includes many replicate analyses, so the ROC for protein

inference uses the results from pooling these replicate data sets. On the yeast data set, the

Fido method performs better than ProteinProphet. On the H. influenzae data, the Fido method

performs nearly identically to ProteinProphet. On the Sigma 49 data set, the Fido method

performs similarly to MSBayes, but achieves a smaller minimum FDR. For the pooled ISB 18

data set, a substantial improvement is observed over ProteinProphet in the low false positive

region. The diagonal line produced by ProteinProphet for the ISB 18 data set corresponds to

25 proteins that each receive a probability of exactly 1.0; because this data set includes many

spectra, many PSMs associated with the decoy proteins are assigned scores larger than zero,

and the ProteinProphet algorithm assigns these decoy proteins scores of 1.0.

In addition to ROC curves, the plots in Figure 2.3 contain series labeled “Overlap,” cor-

responding to the number of proteins identified by both methods at a given number of false

positives. In every case, the overlap line is very close to the ROC curves, indicating that the

methods are consistent with one another and identify a largely overlapping set of proteins at

each score threshold.

Table 2.3 depicts the sensitivity of the methods at different empirical FDRs. The Fido

method outperforms ProteinProphet on the yeast data and performs significantly better than

ProteinProphet on the ISB 18 data set. On the H. influenzae data set, the Fido method

performs almost identically to ProteinProphet; this similarity can also be observed in the ROC

plot in Figure 2.3A. On the C. elegans data set, the Fido method performs better at the 0.0

FDR, worse at the 0.01 FDR and better for higher FDRs. On the Sigma 49 data set, the Fido

method performs better than MSBayes, which does not achieve a FDR less than 0.10.

Figure 2.4 shows, for each data set, the calibration of the posterior probabilities assigned by

the different methods. In these figures, the estimated FDR is compared to the empirical FDR. On

the yeast data set the Fido method has better calibration accuracy compared to ProteinProphet.

On the Sigma 49 data set, the Fido model achieves better calibration than MSBayes. On the

47

FDR H. influenzae Yeast ISB 18 C. elegans Sigma 49

F PP F PP F PP F PP F MSB

0.0 225 224 1008 745 25 — 549 412 19 —

0.01 235 237 1320 1225 25 — 602 687 19 —

0.05 254 249 1603 1471 25 — 849 788 39 —

0.10 256 255 1778 1566 25 — 954 900 39 —

Table 2.3: True Positive Identifications vs. Empirical FDR. The table lists, for the five

data sets, the number of true positive identifications that the methods achieve at the great-

est empirical FDR not exceeding 0.0, 0.01, 0.05, and 0.10. Methods are abbreviated as PP

= ProteinProphet, MSB = MSBayes, and F = Fido, the optimized Bayesian marginalization

method. The true positive counts are boldfaced if that method is better for that data set and

at that particular empirical FDR. All FDR values for ProteinProphet applied to the ISB 18 data

are missing because the minimum FDR attainable was greater than 0.43. All FDR values for

MSBayes applied to the Sigma 49 data are missing because the minimum FDR attainable was

greater than 0.10.

48

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.02 0.04 0.06 0.08 0.1

E
m

pi
ric

al
 F

D
R

Estimated FDR

ProteinProphet
Our Method

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.02 0.04 0.06 0.08 0.1

E
m

pi
ric

al
 F

D
R

Estimated FDR

ProteinProphet
Our Method

(A) H. influenzae (B) Yeast

α∗ = 0.16, β∗ = 0.00, γ∗ = 0.1 α∗ = 0.06, β∗ = 0.00, γ∗ = 0.7

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.02 0.04 0.06 0.08 0.1

E
m

pi
ric

al
 F

D
R

Estimated FDR

ProteinProphet
Our Method

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.02 0.04 0.06 0.08 0.1

E
m

pi
ric

al
 F

D
R

Estimated FDR

ProteinProphet
Our Method

(C) ISB 18 (D) C. elegans

α∗ = 0.11, β∗ = 0.05, γ∗ = 0.1 α∗ = 0.01, β∗ = 0.00, γ∗ = 0.7

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0 0.02 0.04 0.06 0.08 0.1

E
m

pi
ric

al
 F

D
R

Estimated FDR

Bayesian Sampling
Our Method

(E) Sigma 49

α∗ = 0.36, β∗ = 0.05, γ∗ = 0.9

Figure 2.4: FDR calibration plots. For each data set, the plot shows the decoy database

estimate of the empirical FDR as a function of the estimated FDR. The Fido method is compared

to ProteinProphet in (A)–(D) and compare to the ABLA model of MSBayes in (E). The line

along which the two axes are equal is also shown; this line represents an ideally calibrated

model (without considering bias introduced in the estimation of the empirical FDR). The Fido

method was run on each data set with the same set of parameters used for the same data set

in Figure 2.3.

49

ISB 18 data set the Fido method is much better calibrated than ProteinProphet. On the H.

influenzae data set, both the Fido model and ProteinProphet are very well calibrated and achieve

similar results. On the C. elegans data set, the Fido method’s calibration is similar or slightly

inferior to ProteinProphet.

estimates will necessarily include some error. In particular, all decoy proteins are known false

positives but not all target proteins are always present. As a result, target-decoy estimation may

underestimate the empirical FDR in Figure 2.4. However, this observation does not alter the

conclusion that the Fido model is similarly or better calibrated compared to ProteinProphet and

MSBayes. For four of the five sets (H. influenzae, ISB 18, C. elegans, and Sigma 49) the FDR

calibration curve is nearly identical to or below the curve from ProteinProphet, indicating that

the Fido method is at least as conservative as ProteinProphet. Furthermore, on these data sets

ProteinProphet is less conservative than an ideal model. Due to the high level of agreement

among the algorithms in Figure 2.3, it is reasonable to assume that both curves would similarly

move upward; therefore, any negative bias to the empirical FDR estimation would move both

curves similarly upward, causing the Fido model to remain better calibrated than ProteinProphet.

In other words, after correcting for absent targets, it is preferable to have a more conservative

model, and the Fido model is more conservative on these data sets. Furthermore, the ISB 18

and Sigma 49 data sets consist of several proteins directly purified into the sample. In these

cases, there should be little or no error to the estimated empirical FDR, because no proteins

from the target database should be absent.

It cannot be certain whether the Fido method is better calibrated on the remaining yeast data

set. However, at the 0.05 estimated FDR level (which will not be influenced by the potential

empirical FDR bias), the empirical FDR is estimated to be 0.034. Even if the empirical FDR

was underestimated by 50%, the Fido method would be nearly perfectly calibrated. For the Fido

method to have significantly worse calibration than ProteinProphet, the bias towards absent

targets would need to be substantial.

The Fido probability model requires the estimation of three free parameters, α, β, and

γ. Parameters were empirically chosen so that they jointly maximizes the ROC50 score (the

average sensitivity when allowing between zero and 50 false positives) and minimizes the mean

squared error (MSE) from an ideally calibrated probability. The calibrated MSE is computed by

50

integrating the square of the difference between the estimated and the empirical FDR over the

estimated FDR range [0, 0.1]. A rough three-dimensional grid search is then performed in the

range [0.01, 0.76] at resolution of 0.05 for α, in the range [0.00, 0.80] at resolution 0.05 for β,

and in the range [0.1, 0.9] at resolution 0.1 for γ. For each triplet of parameters, both the ROC50

and the calibration MSE are computed. For each data set, the triplet of parameters is selected

to result in an acceptable compromise between the most accurate model and the best-calibrated

model. In order to demonstrate that this comprimise can be achieved objectively, this comprimise

was phrased as an optimization problem, by which the quantity (1 − λ)MSE − λROC50 was

minimized, where λ is a parameter selected to emphasize ROC50 or MSE; a λ approaching 1.0

will shift the emphasis to the most accurate model, and a λ approaching 0.0 will result in a

more calibrated model. Every data set uses λ = 0.15.

Because three parameters are chosen for each data set, it cannot be certain that the observed

differences in performance between the Fido method and ProteinProphet or MSBayes are not

partially due to overfitting. On the other hand, the optimal α and β parameter values are similar

for these data sets.

Furthermore, the influence of the γ parameter is limited because it is estimated with very

low resolution, and very few bits of precision are used to define it. Also, the γ parameter almost

exclusively contributes to calibration because it upweights or downweights all proteins in a similar

manner; using a fixed γ of 0.5, which is equivalent to using a uniform prior for all protein sets,

and performing the grid search for only α and β resulted in nearly identical ROC figures. The

risk of overfitting is also decreased because parameters are chosen by jointly optimizing both

the accuracy and calibration, which are independent values. To demonstrate the robustness of

the Fido model to slightly suboptimal parameters, the values of α, β, and γ that were selected

using the H. influenzae data set were applied to a each of the experiments in the ISB 18 data

set. The Fido method attains a greater ROC50 score than ProteinProphet for 193/236 (81%),

even when using parameters chosen from completely different data.

Table 2.4 shows that the Fido method compares favorably to ProteinProphet and MSBayes

when identifying proteins that contain a high-scoring degenerate peptide. On all of these data

sets, the Fido method identifies no decoy proteins that contain a high-scoring degenerate peptide.

Furthermore, it does so without blindly introducing a systematic bias against such proteins.

51

H. influenzae Yeast

F PP F PP

TP FP TP FP TP FP TP FP

simple proteins 228 1 227 1 983 5 886 2

proteins with degeneracy 2 0 6 0 251 0 163 1

ISB 18 C. elegans

F PP F PP

TP FP TP FP TP FP TP FP

simple proteins 13 0 15 87 420 4 445 14

proteins with degeneracy 10 0 11 6 173 0 273 1

Sigma 49

F MSB

TP FP TP FP

simple proteins 27 1 36 5

proteins with degeneracy 5 0 5 2

Table 2.4: Accuracy on Proteins Containing Degenerate Peptides. The table lists, for

the five data sets, the number of true positive and false positive proteins identified by each

method using a probability threshold of 0.90. The proteins identified are separated into two

classes: “proteins with degeneracy” are proteins that share a high-scoring (≥ 0.90) peptide

with another protein and “simple proteins” do not share such a peptide with another protein.

Proteins that share a high-scoring peptide only through protein grouping are not treated as

proteins with degeneracy in order to prevent any artifacts due to the treatment of grouped

proteins. Methods are abbreviated as PP = ProteinProphet, MSB = MSBayes, and F = Fido,

the optimized Bayesian marginalization method. When high-scoring degenerate peptides must

be resolved, the Fido protein identification method offers a favorable trade-off between sensitivity

and specificity.

52

For instance, on the yeast data, 88 proteins are identified with degenerate peptides without

introducing any false positives. On the ISB 18 and Sigma 49 data sets, the Fido method identifies

nearly the same number of target proteins containing high-scoring degenerate peptides as the

competing methods but without identifying any decoy proteins. In contrast, ProteinProphet and

MSBayes identify six and two decoy proteins on these data sets, respectively. The only data set

where the Fido method does not increase either the sensitivity or specificity without sacrificing

the other is the H. influenzae data, in which the Fido method identifies four fewer degenerate

target proteins but still maintains perfect specificity. These proteins are not a significant percent

of the targets identified. It should be noted that on the C. elegans data set, many fewer target

and decoy proteins are identified that contain high-scoring degenerate peptides, but on this data

set, ProteinProphet is overly permissive, while the Fido method is overly conservative (as shown

by Figure 2.4D). Lowering the protein threshold to 0.8 on the Fido method yields a superior

sensitivity and identical or superior specificity for both categories of proteins.

Rather than treating the PeptideProphet values as probabilities and making an ad hoc correc-

tion, the Fido method analyzes all of the data in a gestalt manner. As a result, the Fido emission

model can prevent a degenerate peptide from being counted twice, and the noise model in the

Fido method can prevent spurious evidence from accumulating and awarding an absent protein

a high score. On large, somewhat noisy data sets like the ISB 18 data set, ProteinProphet

effectively aggregates a great deal of noise, resulting in many decoy proteins with estimated

probabilities of 1.0. In contrast, the Fido method gives these decoy proteins smaller probabil-

ities than ProteinProphet, and more importantly, gives the decoy proteins smaller probabilities

relative to several target proteins.

Figure 2.5 shows a decoy protein (gi|1573516|gb|AAC22189.1|) that matches several

PSMs, but the majority of these PSMs have fairly low scores and are the result of the enor-

mous number of spectra. In contrast, most of the PSMs associated with the target protein

sp|P02643|TNNI2 RABIT have scores above 0.99. The Fido method estimates that the tar-

get and decoy proteins have respective posterior probabilities of 1.0 (which is higher than

any decoy protein posterior) and 0.00092. ProteinProphet assigns both proteins posteriors

of 1.0, preventing them from being effectively ranked. For completeness, the decoy protein

gi|1573522|gb|AAC22195.1|, which shares a common PSM with the target, is also shown.

53

Figure 2.5: Example of differently ranked ISB 18 proteins. An example of three pro-

teins from the ISB 18 data set are shown: one target (sp|P02643|TNNI2 RABIT) and two

decoys (gi|1573522|gb|AAC22195.1| and gi|1573516|gb|AAC22189.1|). ProteinProphet

assigns posteriors of 1.0 to the target protein sp|P02643|TNNI2 RABIT and to the decoy protein

gi|1573516|gb|AAC22189.1|.

54

The Fido method likewise accumulates the relatively weak evidence supporting this decoy pro-

tein to estimate a weak posterior of 0.019 (which is lower than any target protein posterior).

ProteinProphet estimates a 0.0 probability for the protein gi|1573522|gb|AAC22195.1|.

In general, even after partitioning, clustering and pruning zero-probability peptides, it cannot

be sure that the running time of the Fido algorithm will not be prohibitively high. Therefore,

as described above, the user is allowed to specify the log of the maximum size of the search

space. If, after the graph transformations, one or more connected components contain too many

nodes, then the probabilities of low-scoring PSMs in the offending components are temporarily

set to zero, increasing the separability. The threshold for this zeroing procedure is adjusted

recursively, on a per-component basis, to achieve the desired search space size (and, hence,

running time). To test how the performance of the Fido method varies as the size of the search

space is adjusted, the H. influenzae analysis was run multiple times with a fixed value for α

and β but different search space sizes. Figure 2.6 shows that the performance (as measured by

ROC50 score) improves in a step-wise fashion as the search space increases.

2.3 Discussion of accuracy and calibration evaluation

Using a simple and straightforward probability model, it has been demonstrated that protein

posteriors can be efficiently computed using efficient marginalization with respect to a given

collection of PSMs. The resulting posteriors provide rankings that often out-perform accurate

and widely used existing methods, thus providing evidence that finding an exact or near-exact

solution to this problem is beneficial.

Note that the timing results shown in Table 2.2 are slightly unfair, because the Fido procedure

was run once rather than multiple times to select the parameters α and β. In the experiments

reported in Figure 2.3, for example, the Fido procedure was run ∼1900 times; however, it is

not expected that users will require such an exhaustive search in practice. Some parameter

values do not realistically model the mass spectrometry process; for instance α = 0, β = 1

would award all identified proteins with identical scores. Furthermore, empirically, the optimal

parameters from the dense grid search are all fairly similar and would easily be found by a much

lower resolution grid search. For instance, a search over α ∈ {0.01, 0.04, 0.09, 0.16, 0.25, 0.36},
β ∈ {0.01, 0.025, 0.05}, γ ∈ {0.1, 0.5, 0.9} requires 54 iterations (9 × 3 × 3) and produces

55

 0.1445
 0.145

 0.1455
 0.146

 0.1465
 0.147

 0.1475
 0.148

 0.1485

 5 10 15 20 25 30

R
O

C
50

Log Number of Distinct States

Figure 2.6: Accuracy against the number of states. The accuracy of the procedure on the

H. influenzae data (measured by unnormalized ROC50 score) increases as the number of states

allowed grows. A larger number of states corresponds to less aggressive pruning; a smaller

number of states corresponds to pruning many moderately-scoring PSMs. The number of states

can be thought of as the number of possible protein and peptide configurations that must

be enumerated when marginalizing a connected subgraph with these optimizations. The H.

influenzae has the most complex graph connectivity (due to the human decoy database used),

as illustrated by the number of edges in Table 2.2.

56

produces similar parameter sets and very similar results. Running the Fido method 54 times

(i.e. loading the data once and marginalizing 54 times) would take less time on the yeast data

and 20 seconds longer than ProteinProphet on the ISB 18 data. Note, however, that the Fido

method results in substantially better performance on the latter.

When the marginalization is too expensive, a pruning procedure efficiently approximates the

full marginalization. Importantly, the effects of this approximation are restricted to the graph

components in which they are carried out. Thus, when a PSM with a non-zero probability must

be split during the pruning procedure, the pruning will only change the probabilities assigned to

the proteins in that subgraph. In the future, it may be possible to bound the error introduced

by pruning around non-zero nodes. This bound could be used to design pruning strategies

that would minimize the error incurred. When multiple proteins share a large group of high-

scoring peptides, the problem becomes very similar to the minimum set coverage problem,

which is already known to be very difficult; it resides in the complexity class NP-Hard, making

it equivalent to the Traveling Salesperson Problem. Hence, in these scenarios even a locally

inaccurate approximation may be welcome if the runtime is efficient.

A relatively simple enumeration strategy was used to select the values of the three parame-

ters, α, β, and γ. A more rigorous approach would set these parameters using cross-validation.

However, such an approach would still require users to provide a decoy database. α, β, and

γ are shown to be robust across different data sets: Fido attains a greater ROC50 score than

ProteinProphet for 81% (193 of the 236) ISB 18 replicate data sets, even when using param-

eters chosen from the H. influenzae data set. It would be interesting, therefore, to investigate

strategies for estimating these parameter values without using a decoy database.

ProteinProphet’s analysis depends heavily on the data set being analyzed. ProteinProphet’s

strength and weakness are derived from its implicit assumptions and its reliance on Peptide-

Prophet. ProteinProphet implicitly assumes that PeptideProphet scores are true, unbiased

probability estimates. ProteinProphet does not use protein length or the number of associated

peptides to correct the PeptideProphet scores associated with a protein. In a similar manner,

ProteinProphet does not correct for the total number of spectra observed. When myriad spectra

are observed, nearly every peptide has a strong chance of being matched to a spectrum with a

high PeptideProphet score. When ProteinProphet’s assumptions prove to be reasonable, they

57

add extra information and result in a very accurate and well-calibrated model (e.g., the H. in-

fluenzae data set). On data sets where these implicit assumptions are not helpful and may even

be harmful, ProteinProphet performs similarly or worse than the Fido method (e.g., the yeast

and ISB 18 data sets).

One significant difference between the Fido model and ProteinProphet is that the Fido model

explicitly allows the possibility that a high-scoring PSM is the result of an error. In data sets

containing many spectra, the chance of a protein associating with an erroneous high-scoring

PSM becomes higher. This effect can be represented in the Fido model by using a larger value

of the β parameter. It is important to note that even if the β parameter is larger than the α

parameter, this does not mean that a peptide is more probably created from noise rather than

from an associated protein. This is because β is used as the probability that a peptide is matched

to a fragmentation scan given that the peptide was absent. When each protein is associated

with several identified peptides, then the collective effect of these peptides make it very unlikely

that they are absent, substantially lowering the influence of the noise model. ProteinProphet

does consider the number of sibling peptides (NSP), the sum of other peptide scores sharing a

protein association with a candidate peptide, when interpreting a score from PeptideProphet.

But the manner by which this NSP correction lowers inflated peptide scores will not remove a

systematic bias from all peptide scores.

The different manner in which the Fido model handles noise is indicative of a larger funda-

mental difference in how the Fido model employs PeptideProphet scores. ProteinProphet uses

PeptideProphet scores as true probabilities and conditions on the NSP score to distinguish multi-

hit proteins from so-called “one-hit wonders.” Without conditioning on NSP, association with

a single high-scoring peptide may be indistinguishable from association with many high-scoring

peptides. In contrast, the Fido model removes the prior probability estimates used by Peptide-

Prophet and converts them back into discriminant score-based likelihoods. The difference is

that ProteinProphet initially interprets PeptideProphet scores as the probability that a peptide

is present given a paired spectrum was observed, whereas the Fido method initially uses these

scores to compute a value proportional to the probability that a spectrum would be created given

that its paired peptide was present. For a given hypothesized set of present proteins, the Fido

model will compute the likelihood that the spectra were observed given that set of proteins was

58

present. This subtle distinction lets the Fido model use protein-level information when utilizing

the PeptideProphet scores to compute protein posteriors. A protein associated with many high-

scoring peptides will score higher than a protein associated with a single high-scoring peptide,

but without using an iterative heuristic like ProteinProphet’s NSP score.

In a similar manner, the Fido method uses protein-level information in a rigorous, gestalt

manner when handling degenerate peptides, rather than by using a correction in hindsight.

ProteinProphet partitions every degenerate peptide’s probability between its associated proteins.

Initially, the peptide is split equally between them to compute the protein probabilities, but in

the next iteration, each protein is afforded a stake proportional to its most recent probability.

Like the NSP correction, this approach works well, but it does so in a somewhat opaque manner;

hence, identifying its implicit assumptions and improving their effects is not trivial. Rather than

heuristically partitioning each identified peptide amongst its associated proteins, the Fido model

allows a protein with strong independent supporting evidence to “explain away” supporting data

that is shared between itself and other proteins (e.g., degenerate peptides). This happens simply

because the likelihood increases only slightly by including the protein with little independent

supporting evidence, but the likelihood decreases substantially when a protein with substantial

independent supporting evidence is omitted. In this manner, the Fido method automatically

apportions information from degenerate peptides during the marginalization procedure and does

not require an ad hoc adjustment.

Like other methods, the Fido model’s assumptions are not perfect. But because the Fido

model is derived from clear, explicitly stated statistical assumptions, it may be possible to eval-

uate their accuracy and replace them with more relaxed assumptions. For instance, when using

data dependent acquisition, it may be inaccurate to assume that the process of retrieving one

peptide from the precursor scan does not influence the process of retrieving other peptides; the

population of peptides with equal hydrophobicity effectively compete in the MS1 to be selected

for collision induced dissociation. The assumptions defining the noise model and mapping each

spectrum to a unique peptide could be improved by treating spurious peptide identifications as

mismatches between the observed spectrum and peptides that produce similar spectra at that

precursor mass. The protein prior may be improved for certain samples by using more complex

priors that more aggressively enforce competition between proteins for ownership of shared pep-

59

tides. But perhaps the most fruitful avenue for future work involves relaxing the assumptions

regarding the peptide emission model and the noise model. Using the current model, it has

been observed that likelihood estimates of α and β are not as good as the empirical estimates,

suggesting that relaxed assumptions will better model the type of data observed in practice. It

is intuitive that the likelihood estimates do not match the empirical estimates, because likeli-

hood estimates essentially infer a uniform prior on all α, β pairs despite the inherent relatedness

between the parameters (the contribution of β decreases as α increases or as graph connectivity

increases). A more accurate model of these probabilities may preserve the presented optimiza-

tions, while taking into account peptide-specific information. Furthermore, a more sophisticated

model would make far greater use of the entire graph by including peptides that are not matched

to any spectra (without unfairly penalizing proteins that contain many undetectable peptides).

60

Chapter 3

QUANTITATIVE DERIVATION OF INFERENCE AND GRAPH
TRANSFORMATIONS

This chapter uses simple, clearly stated assumptions to rigorously derive the Fido model, and

prove that the graph transformations result in equivalent inference problems that can be solved

more efficiently.

3.1 Statistical notation

Using standard statistical notation, random variables are given capital letters. For a random

variable (for instance X) a particular value that can be taken on by that random variable is

given with the corresponding lowercase letter (x). The event that the random variable takes the

value is noted X = x.

For any random variable X, a sum over the variable x indicates the sum over all possible out-

comes, or the power-set, which is equivalent to the sum over all possible values for the random

variable X. If Xi indicates whether protein i is present or absent, then a sum over xi will sum

over the outcomes whereXi is present (writtenXi) and the case when it is absent (written ¬Xi).

X array of indicators for presence of proteins in the sample, indexed by i, i′, . . .

Y array of indicators for presence of peptides in the sample, indexed by j, j′, . . .

D observed data, with paired spectra and total masses indexed by k

mi,j indicator for protein i is expected to produce peptide j using the digest (equivalent to (i, j) ∈ E)

∆i,j the event that peptide j is produced by emission from a protein

Hj the event that peptide j is produced by an event other than ∆i,j

The size of these arrays is denoted size(X), size(Y),

The numbered equations correspond to a function in the final implementation; the accom-

panying source code (found at http://noble.gs.washington.edu/proj/fido).

http://noble.gs.washington.edu/proj/fido

61

The models of ∆ and H are parameterized in terms of unknown rates α and β.

3.2 Assumptions

Assumption A1: Conditional Independence of Yj and Yj′ given X

Pr(Y = y|X = x) =
∏

j

Pr(Yj |X = x)

Assumption A2: Conditional Independence of Dk and Dk′ given Y

Pr(D|Y = y) =
∏

k

Pr(Dk|Y = y)

Assumption A3: Probability of predicted peptide creation

Pr(∆i,j |Xi) =

α, mi,j = 1

0, else

Assumption A4: Probability of spontaneous peptide emission given the peptide is not

created by proteins

Pr(Hj |∀i, ¬∆i,j) = β

Assumptions A5, A6: Prior, independent belief on presence of proteins

∀i,Pr(Xi) = γ

Pr(X = x) = γ|x|(1− γ)size(X)−|x|

Assumption A7: Conditional Independence of D and X given Y

Pr(D|Y = y,X = x) = Pr(D|Y = y)

62

Assumption A8: Dependence of Dk only on best matching peptide Yj

Pr(Dk|Y = y) = Pr(Dk|Yj(k) = yj(k)),

Pr(Dk|Yj(k) = yj(k), α, β) = Pr(Dk|Yj(k) = yj(k))

given j(k) is the index of the best matching peptide to spectrum and precursor mass pair

k

j(k) = argmax
j′

Pr(Yj′ |Dk)

k(j) = argmax
k′

Pr(Yj |Dk′)

Furthermore, a unique j(k) is assumed to exist for each k, and a unique k(j) is assumed

to exist for each j.

Assumption A9: Independence of predicted peptide creation

Pr(∆i,j ,∆i′,j) = Pr(∆i,j) Pr(∆i′,j)

3.3 Method

3.3.1 Using likelihoods from adjusted PeptideProphet probabilities

It is important to distinguish peptide probabilities that use protein information from peptide

probabilities that do not use protein information (as well as their corresponding priors). Pep-

tideProphet estimates a posterior probabilitie for each peptide without utilizing information in

the associations between proteins and peptides. The Fido model can make use of the Pep-

tideProphet estimates by using them to compute likelihoods that a peptide emitted it’s paired

spectrum.

By default, this document assumes that protein information is being used, but when protein

information is not being used (for instance when PeptideProphet values are used), then condi-

tioning on Q indicates that protein-level information is not available. For instance Pr(Yj) is the

prior probability that peptide Yj is present using protein information, whereas Pr(Yj |Q) is the

prior probability of Yj given by PeptideProphet. This prior probability should take into account

63

the assumed charge state for this PSM. The correct prior values for different charge states are

found in the pepXML output of PeptideProphet.

In this document, conversion to probabilities that do not depend on the proteins will be

accomplished using the fact that

Pr(Dk(j)|Yj) = Pr(Dk(j)|Yj , Q)

using assumption A8.

3.3.2 Method given known α, β, γ

Let the proteins and peptides be partitioned so that all proteins in each partition have no con-

nections to peptides in another partition, and all peptides in each partition have no connections

to proteins in another partition. This can be trivially accomplished by tracing the graph with

depth first search. Denote the protein set corresponding to partition u as x(u) and the peptides

in the partition y(u).

Pr(X(u) = x(u)|D) =
Pr(D|X(u) = x(u)) Pr(X(u) = x(u))

∑

x(u)′ Pr(D|X(u) = x(u)
′
) Pr(X(u) = x(u)

′
)

This probability can be defined in terms of a likelihood function:

Pr(X(u) = x(u)|D) =
L(X(u) = x(u)|D) Pr(X(u) = x(u))

∑

x(u)′ L(X(u) = x(u)
′|D) Pr(X(u) = x(u)

′
)

Pr(D|X(u) = x(u)) =
∑

y(u)

Pr(D|Y (u) = y(u)) Pr(Y (u) = y(u)|X(u) = x(u))

=
∑

y(u)

∏

k

Pr(Dk|Y (u) = y(u)) Pr(Y (u) = y(u)|X(u) = x(u))

=
∑

y(u)

∏

j 6=i

∏

k

Pr(D
(j)
k)

∏

j

Pr(D
(u)
k(j)|Y

(u)
j = y

(u)
j) Pr(Y

(u)
j = y

(u)
j |X(u) = x(u))

Pr(D
(u)
j(k)|Y

(u)
j = y

(u)
j) = Pr(Y

(u)
j = y

(u)
j |D

(u)
j(k), Q)

Pr(D
(u)
k(j)|Q)

Pr(Y
(u)
j = y

(u)
j |Q)

64

Pr(D|X(u) = x(u)) =

∏

j

[

∏

k

Pr(D
(j)
k |Q)

]

∑

y(u)

∏

j

Pr(Y
(u)
j = y

(u)
j |D

(u)
k(j), Q)

Pr(Y
(u)
j = y

(u)
j |Q)

Pr(Y
(u)
j = y

(u)
j |X(u) = x(u))

L(X(u) = x(u)|D) =

∑

y(u)

∏

j

Pr(Y
(u)
j = y

(u)
j |D

(u)
k(j), Q)

Pr(Y
(u)
j = y

(u)
j , Q)

Pr(Y
(u)
j = y

(u)
j |X(u) = x(u))

=
Pr(Y

(u)
1 |D

(u)
k(j), Q)

Pr(Y
(u)
1 , Q)

Pr(Y
(u)
1 |X(u) = x(u))

∑

y(u):y
(u)
1

∏

j 6=1

Pr(Y
(u)
j = y

(u)
j |D

(u)
k(j), Q)

Pr(Y
(u)
j = y

(u)
j , Q)

Pr(Y
(u)
j = y

(u)
j |X(u) = x(u))

+
Pr(¬Y (u)

1 |D
(u)
k(j), Q)

Pr(¬Y (u)
1 , Q) Pr(¬Y (u)

1 |X(u) = x(u))

∑

y(u):¬y
(u)
1

∏

j 6=1

Pr(Y
(u)
j = y

(u)
j |D

(u)
k(j), Q)

Pr(Y
(u)
j = y

(u)
j , Q)

Pr(Y
(u)
j = y

(u)
j |X(u) = x(u))

65

=
Pr(Y

(u)
1 |D

(u)
k(j), Q)

Pr(Y
(u)
1 , Q)

Pr(Y
(u)
1 |X(u) = x(u))

∑

y(u):y
(u)
1

∏

j 6=1

Pr(Y
(u)
j = y

(u)
j |D

(u)
k(j), Q)

Pr(Y
(u)
j = y

(u)
j , Q)

Pr(Y
(u)
j = y

(u)
j |X(u) = x(u))

+
Pr(¬Y (u)

1 |D
(u)
k(j), Q)

Pr(¬Y (u)
1 , Q) Pr(¬Y (u)

1 |X(u) = x(u))

∑

y(u):y
(u)
1

∏

j 6=1

Pr(Y
(u)
j = y

(u)
j |D

(u)
k(j), Q)

Pr(Y
(u)
j = y

(u)
j , Q)

Pr(Y
(u)
j = y

(u)
j |X(u) = x(u))

=

Pr(Y
(u)
1 |D

(u)
k(j), Q)

Pr(Y
(u)
1 , Q)

Pr(Y
(u)
1 |X(u) = x(u)) +

Pr(¬Y (u)
1 |D

(u)
k(j), Q)

Pr(¬Y (u)
1 , Q)

Pr(¬Y (u)
1 |X(u) = x(u))

∑

y(u):y
(u)
1

∏

j 6=1

Pr(Y
(u)
j = y

(u)
j |D

(u)
k(j), Q)

Pr(Y
(u)
j = y

(u)
j , Q)

Pr(Y
(u)
j = y

(u)
j |X(u) = x(u))

· · ·

=
∏

j

∑

y
(u)
j

Pr(Y
(u)
j = y

(u)
j |D

(u)
k(j), Q)

Pr(Y
(u)
j = y(u), Q)

Pr(Y
(u)
j = y

(u)
j |X(u) = x(u))

where the likelihood constant does not depend on X, α, β, γ. This final transformation uses the

conditional independence assumption to convert the sum over all peptide sets into a product over

peptide indices. Thus the likelihood can be computed for each protein set without computing

the sum over all peptide sets.

Pr(Y
(u)
j) =

∑

x(u)′

Pr(Y
(u)
j |X(u) = x(u)

′
) Pr(X(u) = x(u)

′
)

66

Pr(Y
(u)
j |X(u) = x(u)) = 1− Pr(¬Hj ,

⋂

i:x
(u)
i

Pr(¬∆i,j))

= 1− Pr(¬Hj |
⋂

i:x
(u)
i

Pr(¬∆i,j)) Pr(
⋂

i:x
(u)
i

Pr(¬∆i,j))

= 1− (1− β)
∏

i:x
(u)
i

,mi,j

(1− α)

= 1− (1− β)(1− α)|{x
(u)
i

:mi,j}|

= Pr(Y
(u)
j | |{X

(u)
i : mi,j}| = |{x(u)i : mi,j}|)

Pr(Yj) =

size({X(u):mi,j})
∑

k=0

Pr(Y
(u)
j | |{X

(u)
i : mi,j}| = k) Pr(|{X(u)

i : mi,j}| = k) (3.1)

Pr(Y
(u)
j | |{X

(u)
i : mi,j}| = k) = 1− (1− β)(1− α)k (3.2)

Pr(|{X(u)
i : mi,j}| = k) =

(

size(|{X(u) : mi,j}|)
k

)

γk(1− γ)size(|{X
(u):mi,j}|)−k (3.3)

Let c(u) be a collection of sets of proteins from partition i that have idential connectivity in

the graph. Let mν,j indicate mi,j for all i ∈ c
(u)
ν . Also, use ν(i) as shorthand for the index of

the collection containing protein i.

Pr(Y
(u)
j | |{X

(u)
i : mi,j}| = k) = Pr(Y

(u)
j |

∑

ν:mν,j

|{X(u)
i : i ∈ mν,j}| = k)

Define a new random variable N as the sum of the present proteins in each collection, and

write the previous probability in terms of this variable:

N (u)
ν = |{X(u)

i : i ∈ c(u)ν }|

Pr(Y
(u)
j | |{X

(u)
i : mi,j}| = k) = Pr(Y

(u)
j |

∑

ν:mν,j

N (u)
ν = k)

Pr(Y
(u)
j |N (u) = n(u)) = Pr(Y

(u)
j | |{X

(u)
i : mi,j}| =

∑

ν:mν,j

N (u)
ν) (3.4)

67

Summing over all sets of proteins X(u) is now equivalent to summing over the indistinguish-

able possible values of N (u) and multiplying each term by the number of possible ways it could

be made using protein sets.

∑

x(u)

Pr(D|X(u) = x(u)) Pr(X(u) = x(u)) =
∑

n(u)

Pr(D|N (u) = n(u)) Pr(N (u) = n(u))

∑

x(u)

L(X(u) = x(u)|D) Pr(X(u) = x(u)) =
∑

n(u)

L(N (u) = n(u)|D) Pr(N (u) = n(u))

L(N (u) = n(u)|D) =
∏

j

∑

y
(u)
j

Pr(Y
(u)
j = y

(u)
j |Dk(j))

Pr(Y
(u)
j = y

(u)
j |Q)

Pr(Y
(u)
j = y

(u)
j |N (u) = n(u)) (3.5)

Pr(N (u) = n(u)) =
∏

ν

Pr(N (u)
ν = n(u)

ν) (3.6)

Pr(N (u)
ν = n(u)

ν) =

(|c(u)ν |
n
(u)
ν

)

γn
(u)
ν (1− γ)|c

(u)
ν |−n

(u)
ν (3.7)

Pr(X
(u)
i |D) =

∑

x(u):x
(u)
i

Pr(X(u) = x(u)|D)

=
∑

n(u):n
(u)
ν(i)

>0

Pr(N (u) = n(u), X
(u)
i |D)

Pr(N (u) = n(u), X
(u)
i |D) =

Pr(D|N (u) = n(u), X
(u)
i) Pr(N (u) = n(u), X

(u)
i)

Pr(D)

=
Pr(D|N (u) = n(u)) Pr(N (u) = n(u), X

(u)
i)

Pr(D)

=
Pr(D|N (u) = n(u)) Pr(X

(u)
i |N (u) = n(u)) Pr(N (u) = n(u))

Pr(D)

= Pr(N (u) = n(u)|D) Pr(X
(u)
i |N (u) = n(u))

Pr(N (u) = n(u)|D) =
Pr(D|N (u) = n(u)) Pr(N (u) = n(u))

∑

n(u)′ Pr(D|N (u) = n(u)′) Pr(N (u) = n(u)′)

68

Pr(N (u) = n(u)|D) =
L(N (u) = n(u)|D) Pr(N (u) = n(u))

∑

n(u)′ L(N (u) = n(u)′|D) Pr(N (u) = n(u)′)
(3.8)

The vector of these posterior probabilities can be defined to further save computation by

computing all of them in one pass over the set {∀n(u)′}:

Pr(X(u)|D) =
∑

n(u)

Pr(N (u) = n(u)|D) Pr(X(u)|N (u) = n(u)) (3.9)

(3.10)

Where Pr(X(u)|N (u) = n(u)) is a vector defined as follows:

Pr(X(u)|N (u) = n(u))i =
n(u)

|c(u)
ν(i)|

(3.11)

(3.12)

3.3.3 Method given unknown α, β, γ

Likelihood estimates of the model parameters α, β, γ attained by marginalizing out X and Y to

compute Pr(D|α, β, γ), as well as marginalized estimates using a uniform prior on α, β, γ, are

substantially biased, and do not yield good performance in practice. For that reason, parame-

ters are chosen empirically by simultaneously optimizing target-decoy discrimination and FDR

calibration.

The grid search performed need not cover the entire range [0, 1]; for instance, α values

approaching 1.0 do not accurately model the mass spectrometry process, in which many present

peptides are frequently unobserved. High-resolution grid search is likewise unecessary; near 0,

higher resolution is more important. Empirically, a rough three-dimensional grid search in the

range [0.01, 0.76] at resolution of 0.05 for α, in the range [0.00, 0.80] at resolution 0.05 for β,

and in the range [0.1, 0.9] at resolution 0.1 for γ yields similarly low optimal α and β values;

therefore, even this low-resolution range is excessive.

69

Increasing the sparsity of the graph (pruning)

In practice, the number of proteins in each partition is often small enough that the algorithm

is efficient. However, this is sometimes not the case. A single protein partition can be split by

assuming that the peptides that join two subpartitions, Y (0), are not present. This assumption

introduces no error when these peptides receive a zero score from PeptideProphet.

Note that normally j iterates over every index where it is used, however some statements

here need to limit to Y (0), and so are explicitly referred to as j(0).

First it is demonstrated that the error will be zero in this case:

|Pr(Xi|D)− Pr(Xi, Y
(0) = {}|D)| = |

∑

y(0)

Pr(Xi, Y
(0) = y(0)|D)− Pr(Xi, Y

(0) = {}|D)|

=
∑

y(0) 6={}

Pr(Xi, Y
(0) = y(0)|D)

≤
∑

y(0) 6={}

Pr(Y (0) = y(0)|D)

≤
∑

j

Pr(Y
(0)
j |D)

Because, writing Y (0)′ as the elements other than Y
(0)
1 ,

∑

y(0) 6={}

Pr(Y (0) = y(0)|D) =
∑

y(0)
′

6={}∧(¬y
(0)
1 ∨y

(0)
1)

Pr(Y (0)′ = y(0)
′|D)

= Pr(Y
(0)
1 |D) +

∑

y(0)
′

6={}

Pr(Y (0)′ = y(0)
′
,¬Y (0)

1 |D)

≤ Pr(Y
(0)
1 |D) +

∑

y(0)
′

6={}

Pr(Y (0)′ = y(0)
′|D)

70

and continuing inductively, then

≤ · · · ≤
∑

j

Pr(Y
(0)
j |D)

Since Pr(Y
(0)
j |D) = 0 when Pr(Y

(0)
j |Dk(j), Q) = 0 (as long as Pr(D) > 0 which can be

shown since ∀r, Pr(Y = y|X = x) > 0 as long as α, β ∈ (0, 1), meaning that Pr(Y = y) > 0,

and Pr(D|Y = y) > 0 trivially for some Y = y, and so Pr(D) > 0) then any peptide given a

zero score by PeptideProphet can be assumed to be absent. When a peptide is given a very small

score by PeptideProphet, then the problem can be approximated more efficiently by assuming

the score was zero. In the future, it would be useful to develop a bound on the error introduced

by making this approximation, since it would suggest a strategy for which peptides should be

changed to zero scored.

Second, it is demonstrated that assuming Y (0) = {} allows the proteins to be divided into

two partitions, X(1) and X(2) with peptides Y (1) that associate only with X(1), Y (2) that

associate only with X(2), and Y (0) that associate with both X(1) and X(2), then:

Pr(D,Y (0) = {}|X(1) = x(1), X(2) = x(2)) =
∑

y(1),y(2)

Pr(D(1)|Y (1) = y(1)) Pr(D(2)|Y (2) = y(2)) Pr(D(0)|Y (0) = {})

Pr(Y (1) = y(1)|X(1) = x(1)) Pr(Y (2) = y(2)|X(2) = x(2))

Pr(Y (0) = {}|X(1) = x(1), X(2) = x(2))

Pr(Y (0) = {}|X(1) = x(1), X(2) = x(2)) =

Pr(Y (0) = {}|X(1) = x(1), X(2) = {}) Pr(Y (0) = {}|X(2) = x(2), X(1) = {})
∏

j(0) Pr(¬Hj(0) |
⋂

i:xi
¬∆i,j(0))

71

Pr(D,Y (0) = {}|X(1) = x(1), X(2) = x(2)) =

1
∏

j(0) Pr(¬Hj(0) |
⋂

i:xi
¬∆i,j(0))

∑

y(1)

Pr(D(1)|Y (1) = y(1)) Pr(D(0)|Y (0) = {})

Pr(Y (2) = y(2)|X(2) = x(2)) Pr(Y (0) = {}|X(2) = x(2), X(2) = {})
∑

y(2)

Pr(D(2)|Y (2) = y(2))

Pr(Y (2) = y(2)|X(2) = x(2)) Pr(Y (0) = {}|X(2) = x(2), X(1) = {})

=

1

Pr(D(0)|Y (0) = {})∏j(0) Pr(¬Hj(0) |
⋂

i:xi
¬∆i,j(0))

∑

y(1)

Pr(D(1)|Y (1) = y(1)) Pr(D(0)|Y (0) = {})

Pr(Y (2) = y(2)|X(2) = x(2)) Pr(Y (0) = {}|X(2) = x(2), X(2) = {})
∑

y(2)

Pr(D(2)|Y (2) = y(2)) Pr(D(0)|Y (0) = {})

Pr(Y (2) = y(2)|X(2) = x(2)) Pr(Y (0) = {}|X(2) = x(2), X(1) = {})

=

1

Pr(D(0)|Y (0) = {})∏j(0) Pr(¬Hj(0) |
⋂

i:xi
¬∆i,j(0))

Pr(D(1), D(0), Y (0) = {}|X(1) = x(1), X(2) = {})

Pr(D(2), D(0), Y (0) = {}|X(2) = x(2), X(1) = {})

72

Finally, the likelihood can be defined:

L(X(1), X(2)|Y (0) = {}, D) =

1
∏

j(0) Pr(¬Hj(0) |
⋂

i:xi
¬∆i,j(0))

L(X(1) = x(1), X(2) = {}|Y (0) = {}, D(1), D(0))

L(X(2) = x(2), X(1) = {}|Y (0) = {}, D(2), D(0))

(3.13)

where the likelihood constant does not depend on X, α, β, γ.

The resulting probability and likelihood is equivalent (aside from the leading correction in

the previous formula) to those computed after disconnecting X(1) from X(2) by duplicating the

peptides that they share so that each X(1) and X(2) associate with their own copy of Y (0) and

D(0).

3.4 Analysis of approximation errors from pruning

The calculation of posterior probabilities is exact when only zero-scoring PSMs are used for

pruning. When PSMs with small nonzero scores are used, then a small approximation error is

introduced. Occassionaly, it may be necessary to prune a PSM with a large score in order to

achieve the desired separability. Even in this case, the error introduced may be small and is

confined to the proteins in the same connected subgraph; therefore, the overall approximation

error depends not only on the highest-scoring PSM pruned, but on the quantity of PSMs pruned

and their scores. Figure 3.1 plots the distribution of pruned PSM scores necessary to require

no more than 218 marginalization steps for any subgraph. It is demonstrated that there are not

many high-scoring PSMs that need to be pruned, even to achieve this strict level of separability.

The yeast data requires a couple of high-scoring PSMs to be pruned, but the proteins associated

with these PSMs are also suppported by other PSMs; therefore, the error is still minimal and

only influences these few proteins.

73

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 P

ru
ne

d
P

ep
tid

es

PSM Score

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 P

ru
ne

d
P

ep
tid

es

PSM Score

(A) H. influenzae (B) Yeast

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 P

ru
ne

d
P

ep
tid

es

PSM Score

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 P

ru
ne

d
P

ep
tid

es

PSM Score

(A) ISB 18 (B) Sigma 49

Figure 3.1: Distribution of pruned PSM scores. For each data set, a histogram of the scores

of pruned PSMs is plotted. The figure shows that almost all pruned PSMs have very low scores.

The C. elegans data set is not shown because it does not require pruning to achieve this much

separability.

74

Chapter 4

EXTENDING THE FIDO METHOD WITH FORMAL GRAPH-THEORETIC
PROCEDURES

4.1 Methods for graphical inference

The efficiency with which inference can be performed is extremely important: the computational

cost of inference has impeded the use of more complex and realistic models of the tandem mass

spectrometry process. In this chapter, the efficiency and accuracy with which various inference

methods estimate posterior probabilities is evaluated by using the Fido model. Specifically,

the naive marginalization approach used by Fido after graph transformation is compared to

three alternative approaches: two MCMC methods, and junction tree marginalization. Both

MCMC methods attain successively more accurate estimates of posteriors by sampling from

possible outcomes of unkown random variables. Specifically, two Gibbs samplers are used;

both store a current configuration of unobserved random variables and propose and sample from

changes to this configuration. The first MCMC approach samples the states of both proteins and

peptides using a Gibbs sampler similar to MSBayes. The second Gibbs sampler approach, called

a “collapsed Gibbs sampler,” samples only the states of proteins, and then exploits conditional

independence to efficiently marginalize out the peptides given that protein configuration.

The third method considered is “junction tree inference.” A junction tree is a tree where

each tree node is a set of vertices from the original graph and where any vertex found in two

tree nodes must be found on the path between them [26]. Some sparsely connected graphs can

be decomposed into junction trees that can be marginalized significantly faster than using naive

marginalization. The speedup introduced depends on the connectivity of the graph; some graphs

produce junction trees that can be marginalized very efficiently, while other graphs produce

junction trees that are no more efficient to marginalize than with the naive approach. In this

chapter, the practical benefit of junction tree inference is investigated for real protein-to-peptide

graphs using a from-scratch implementation of tree decomposition and the Hugin algorithm [1].

75

In this chapter, it is shown that the cost of protein inference is dominated by a few highly

connected subgraphs of proteins. For many real protein inference graphs, junction tree inference

can compute posteriors much more efficiently than naive marginalization. Likewise, posterior

estimates from a collapsed Gibbs sampler converge much more quickly than using the standard

Gibbs sampler. Both junction tree inference and collapsed Gibbs sampling can compute high-

quality posteriors in a fraction of the time required by naive marginalization and the Gibbs

sampling approaches.

4.2 Data sets

For each inference method, the connectivity of the protein-to-peptide graphs and the coverage

for the experiment determines the difficulty of protein inference. The complexity of computing

protein posteriors was analyzed using the three model organism protein lysate data sets used to

evaluate Fido: H. influenzae, S. cerevisiae, and C. elegans. For each data set, the spectra were

searched against a database comprised of the target organism’s proteome and the same set of

decoy proteins used to evaluate Fido. The net connectivity of these target and decoy databases,

as well as the coverage of the experiment, determine the complexity of protein inference for each

data set. For all data sets, proteins adjacent to identical peptide sets were grouped to ensure

the complexity results from distinct, biologically interesting proteins, that are a challenge to

resolve during protein inference. Even if these proteins were not grouped, the clustering graph

transformation would ensure that identically connected proteins do not substantially contribute

to the cost of inference.

4.3 Results

4.3.1 Alternative graphical approaches

Posterior probabilities for the Fido model can be estimated using alternative approaches to

naive marginalization, whereby all possible protein (or protein cluster) states are enumerated for

each connected subgraph after graph transformations. A popular approach to approximating

posteriors, MCMC, does so using a random walk through the space of unobserved random

variables. This random walk is chosen so that its corresponding Markov chain has a stationary

76

distribution equal to the desired posteriors. Gibbs sampling is a specific random walk procedure,

which starts with some initial state for the unobserved random variables and proposes several

random state changes. A value proportional to the probability of each proposed configuration is

computed, and a new configuration is selected based on these relative proportional probabilities.

The Gibbs sampler randomly samples from configurations defined by states for all peptides

and proteins. Using a “blocking” approach similar to MSBayes, all possible changes are proposed

jointly for a random block of peptides and a random block of proteins. Block sizes of three were

used for both the peptides and proteins, because that was found to yield best performance for

MSBayes.

Because the Fido model uses independent protein priors and treats peptides as conditionally

independent given the protein set, it is possible to efficiently marginalize over all peptide con-

figurations when the protein configuration is known. In the same manner as the marginalization

strategy used by Fido, this conditional independence can be exploited when given a protein con-

figuration to marginalize out all sets of peptides in linear time. This idea was used to create a

“collapsed Gibbs sampler,” which samples some unobserved random variables and marginalizes

out the remaining variables. In the collapsed Gibbs sampler, only protein configurations were

sampled and marginalized out the peptide configuration given the sampled protein configuration.

The same blocking strategy was used for these protein blocks, sampling all possible perturbations

to a random block of size three.

In addition to sampling approaches, junction tree inference, a more sophisticated approach to

exact marginalization, was also considered. Naive inference computes posterior probabilities by

“marginalizing” or summing over all protein configurations in a connected subgraph; the number

of configurations, and thus the computational cost of naive marginalization, is exponential in the

number of proteins in the subgraph. However, it is possible to marginalize some subgraphs more

efficiently. For example, the graph in Figure 4.1A can be thought of as two subgraphs that are

“d-separated” by protein X3; given a known boolean value for X3, the graph separates into two

disjoint subgraphs. Removing X3 and its edges leaves two graphs, each containing two proteins;

therefore, the entire graph can be marginalized in 2 ×
(

22 + 22
)

= 24 protein configurations

rather than the 25 protein configurations required by naive marginalization.

In general, a protein set that results in a useful d-separation in the graph should be marginal-

77

R4

E3E4

R5 R1

E1

R2

E2

R3

R3,R2

R1,R2

1

R3,R4,R5

1

(A) (B)

Figure 4.1: Decomposing a graph for protein inference. (A) An example DAG for a five

protein inference problem. Proteins, labeled with prefix X, are shown as large circles and

peptides, labeled with prefix Y , are shown as smaller circles. Choosing a specific state for

protein X3 effectively removes X3 and its edges from the graph and propagates these values

towards its sucessors. This results in two subgraphs that can be marginalized independently.

(B) The protein subgraph of the junction tree depicts dependencies between proteins.

ized out late so that it has a specific value when other variables are marginalized out. Choosing

a collection of nodes that d-separates the graph corresponds to placing those nodes late in the

“elimination ordering.” The most efficient elimination ordering for marginalizing all variables

corresponds to the tree decomposition (or junction tree) with minimum treewidth. Decom-

posing a graph into a tree of minimum treewidth is NP-hard [2]; however, in practice greedy

heuristics can be used to create trees with low treewidth. Figure 4.1B shows that this protein

inference problem can be decomposed into a tree of four nodes with treewidth two. For this

reason, marginalization can be performed by visiting 23 + 22 + 22 = 24 protein configurations.

Effectively, the junction tree shown makes use of the fact that X3 d-separates (X1, X2) from

(X4, X5).

Tree decomposition was performed using a minimum neighbor heuristic (nodes were elim-

inated in ascending order of the number of remaining neighbors in the graph). Inference was

performed using an implementation of the Hugin algorithm, which efficiently computes the

marginal posterior probabilities using the junction tree.

78

4.3.2 The cost of naive marginalization in real protein inference graphs

In order to investigate the difficulty of marginalization on real data sets, each data set was

divided into connected subgraphs and the number of proteins in each connected subgraph was

counted. In the first row of Figure 4.2, the red solid series shows the distribution of naive

marginalization costs for the unpruned graphs from each data set; the x-axis of each figure is

the value of the log marginalization cost and the y-axis is the number of connected subgraphs

with log marginalization cost at or exceeding that value. The H. influenzae data set contains

roughly 10 connected subgraphs with marginalization cost at or exceeding 225 and maximum

marginalization cost 2120; naive marginalization on this data set is far too computationally

expensive to be performed. The unpruned S. cerevisiae data has only two subgraphs with more

than 10 proteins: one contains 22 proteins and the other contains 54. While enumerating 222

protein configurations is on the high side of what can be performed efficiently, 254 configurations

is too high for naive marginalization to be practially useful. The unpruned C. elegans data

contains no connected subgraphs with more than six proteins; therefore, naive marginalization

is quite practical. It is somewhat surprising that naive marginalization is feasible on the data

from the most complex organism and with the highest coverage; however, closer examination

reveals that some highly connected proteins can be successfully grouped together. These proteins

are not necessarily identical; they simply contain the same set of observed peptides. Without

grouping these proteins, the cost of naive marginalization for the C. elegans data would be much

higher.

Proteins connected solely by PSMs with scores very close to zero can be separated without

introducing any error. A PSM with a score of zero requires it was neither created by a protein

or by the noise model. These same necessary events correspond to a graph in which the zero-

scoring PSM is copied so that each adjacent protein has its own copy; therefore, by simply

adjusting for the number of copies made, it is possible to transform one graph into subgraphs

with fewer proteins without any error using the pruning transformation. Because pruning can

sometimes reduce the cost of marginalization without introducing any error, the cost of naive

marginalization is considered after pruning PSMs with very low PeptideProphet scores. The

second row of Figure 4.2 shows the cost of naive marginalization after pruning PSMs with

79

scores that are practically zero (i.e. less than 0.001). After pruning these low scoring PSMs,

the H. influenzae data contains no connected subgraphs more than six proteins, making naive

marginalization trivial. The H. influenzae data was searched against a target-decoy database

comprising both the H. influenzae proteome and the human proteome. Generally, peptides

associated with human proteins should receive very low scores; therefore, pruning is very effective

at reducing the cost of marginalization. In contrast, pruning is of little use on the S. cerevisiae

data because larger subgraphs are connected by high-scoring peptides found in yeast proteins.

Because C. elegans was already quite easy, there is essentially no benefit from pruning.

For each experiment, the graph containing only the peptides matched to observed spectra

and only the proteins adjacent to those peptides is a subgraph of the entire bipartite graph for the

entire search database; all proteins, peptides, and edges in the graph from an experiment must

also be found in the full graph produced by the search database. For this reason, the complexity

of the graph from the search database provides an upper bound on the complexity of protein

inference for any data set searched against that proteome. The cost of naive marginalization is

therefore analyzed on graphs produced by digesting each target proteome in silico and including

all fully tryptic peptides with lengths in range [6, 50] residues and masses in range [200, 7200]

daltons. The third row of Figure 4.2 shows the cost of naive marginalization for the entire

proteome of each of these species. As expected, naive marginalization on the H. influenzae data

is trivial, corroborating the prediction that the difficult subgraphs are the result of the human

decoy database. The full S. cerevisiae proteome is more difficult than the observed data, but

the distribution has a similar shape. On the other hand, the C. elegans proteome is far more

difficult. Despite the fairly good coverage of the data set, the observed data produces a graph

that is only a fraction of the graph produced by digesting the full proteome. An experiment

that covered a larger portion of the C. elegans proteome would not only produce subgraphs that

were more highly connected, it would also increase the chances of connecting a protein with a

peptide that it does not share with other proteins; such a peptide would prevent a protein from

being grouped, which may substantially increase the cost of inference.

80

4.3.3 The value of tree decomposition

For each connected subgraph, a corresponding junction tree was created; this tree was used to

compute the number of protein configurations required for marginalization using junction tree

inference. A disparity between the cost of naive marginalization and the cost of junction tree

indicates subgraphs with tree decompositions that can be marginalized more efficiently than

with the naive approach. Figure 4.2 overlays the distributions of cost for junction tree inference

using a blue dashed series.

The first row of Figure 4.2 shows the cost of inference on the unpruned graphs. On the

H. influenzae data, the cost of junction tree inference is substantially lower than the cost of

naive marginalization: there are only two subgraphs requiring more than 225 steps with junction

tree inference, whereas there are around 10 subgraphs requiring more than 225 steps using naive

inference. Furthermore, the most difficult subgraph for junction tree inference requires just over

240 steps; in comparison, the most difficult subgraph for naive marginalization requires more

than 2120 steps. The S. cerevisiae data exhibits a more modest improvement from junction

tree inference, but the cost of the most expensive subgraph drops from 254 to 240 when using

junction tree inference rather than naive marginalization. The improvement to the C. elegans

data set is negligable, largely because the most computationally expensive subgraph for naive

marginalization requires a modest 26 steps.

The second row of Figure 4.2 shows the cost of junction tree inference after pruning the data.

There is no improvement over naive marginalization for the pruned H. influenzae data set, which

is quite easy when using naive marginalization. As noted above, the large subgraphs in the H.

influenzae data set are the result of matches to the human decoy database; spectra that match

peptides adjacent only to decoy proteins generally have very low scores and were successfully

pruned, thus reducing the number of proteins in connected subgraphs. These subgraphs are

so small that junction tree inference offers no benefit. Junction tree inference improves the

pruned S. cerevisiae data about as well as it improves the unpruned S. cerevisiae data. The

larger connected subgraphs on this data set have high-scoring PSMs that come from target

proteins; therefore, pruning barely changes the S. cerevisiae graph. Likewise, pruning has nearly

no influence on the C. elegans data set, and so the improvement of junction tree inference is

81

negligable, just as it was for the unpruned data.

The third row of Figure 4.2 shows the cost of junction tree inference on the graph produced

from the entire proteome of the target organism. On the H. influenzae data, junction tree

inference provides no advantage over naive marginalization, which is already quite easy. The

distribution of costs is nearly identical to that of the pruned H. influenzae data, confirming that

the complexity of inference for the unpruned H. influenzae data was the result of the human

decoy database. The S. cerevisiae data set is more interesting, and the improvement of junction

tree inference over naive marginalization is noteworthy: in one case, junction tree inference

improves upon naive marginalization by reducing the number of steps necessary from 272 to just

under 250. The full C. elegans proteome data has the most dramatic improvement from junction

tree inference. The largest connected subgraph contains over 2000 proteins, but it corresponds

to a junction tree that can be solved in 289 steps. Furthermore, junction tree inference requires

no more than 219 steps for all remaining subgraphs; aside from the largest subgraph, there are

24 other subgraphs that demand more than 219 steps using naive marginalization, including

subgraphs requiring 289, 259, and 250 steps.

4.3.4 Convergence of inference methods

A moderately large subgraph of 22 proteins from the S. cerevisiae data set was used to compare

empirically the various inference algorithms. This subgraph is particularly useful because it is

non-trivial for naive marginalization and it can’t be substantially separated without pruning high-

scoring PSMs, but exact inference is still feasible; therefore, the exact posteriors can be used as

a gold standard to evaluate and compare the other methods. Figure 4.3A, shows the directed

protein-to-PSM graph. Figure 4.3B shows the junction tree produced by that graph. Each node

in the junction tree is labeled with the number of proteins found in the node; the number of

variables in each node determines the cost of junction tree inference. The largest node contains

14 proteins, and the total cost of enumerating all protein states for each junction tree node is

214.644. Naive marginalization requires 222 steps.

Figure 4.4 shows the tradeoff between error and efficiency when analyzing this subgraph

using the four inference algorithms. All methods used the optimal α, β, and γ parameters

82

H. influenzae S. cerevisiae C. elegans

U
n
pr
u
n
ed

P
ru
n
ed

F
u
ll
pr
ot
eo
m
e

Figure 4.2: Distribution of marginalization complexities. For each organism, the following

are plotted: the distribution of marginalization costs for the connected subgraphs found in

the unpruned graph, the pruned graph, and the graph from the full target proteome. The x-

axis measures the log marginalization cost of a subgraph, and the y-axis shows the number of

subgraphs with marginalization cost at or exceeding that cost. The distribution of costs using

naive marginalization is shown using the red solid series and the distribution of costs using

junction tree inference is shown using the blue dashed series.

83

previously found to simultaneously yield the highest discrimination and calibration. The x-axis

plots the execution time and the y-axis plots the largest absolute error introduced compared to

doing exact marginalization. All methods were implemented using a shared python framework.

All times are reported in user time. It should be noted that the relative times of the python

implementations are useful for comparison, but the actual times presented are not representative

of a fast implementation in a compiled language; for instance, the C++ version available in

[28] is substantially faster than the corresponding python implementation. Using the largest

absolute posterior error was motivated by the fact that a single significant perturbation to a

protein’s posterior estimate disrupts the overall ranking of the proteins even if the average error

of each posterior is small. The Gibbs sampler and the collapsed Gibbs sampler were each run

for successively longer periods while periodically logging the error of their estimates. Both

samplers were started at random configurations of variables with nonzero likelihood and given

a 100 iteration burn-in. Because the samplers are stochastic, Figure 4.4 shows the average

time-error relationship after replicating 10 times for each sampler; these replicate series were

all very close to the average. Naive marginalization and junction tree inference were run after

successively pruning the graph more and more aggressively. Exact inference on the unpruned

graph introduces no error and was used as the baseline. As more PSMs with higher scores are

pruned, marginalization becomes more efficient, but the largest posterior error becomes larger.

Not surprisingly, the collapsed Gibbs sampler outperforms the Gibbs sampler, which mixes less

efficiently because it samples the peptide configuration as well as protein configuration. Also not

surprising is the fact that junction tree inference is superior to naive marginalization, particularly

when the graph is unpruned. When the computation time is very small, the samplers perform

worse than the marginalization procedures; however, as more time is allowed, the collapsed Gibbs

sampler becomes competitive with junction tree inference and offers a superior tradeoff between

error and time by avoiding using high-scoring PSMs for pruning. When around 2000 seconds

are allowed, junction tree inference obtains nearly the exact answer, which will be approached

asymptotically by the samplers.

84

1 2

1 4

1 1

4

3

1 2
1 1

9

6

21

9

8

(A) (B)

Figure 4.3: A difficult connected subgraph and its tree decomposition. Pruning introduces

no error when pruned peptides have very small scores; however, some connected subgraphs may

not be separable without pruning higher-scoring peptides. (A) In a subgraph taken from the

S. cerevisiae data set, 22 dependent proteins cannot be separated without pruning high-scoring

peptides. Many proteins in this subgraph share several peptides; in order to separate groups

of proteins, all peptides shared by the groups must be pruned. Proteins are shown as large

circles and peptides are shown as smaller circles. (B) Each node in the junction tree is labeled

by the number of proteins it contains and each edge is labeled by the size of the intersection

between its incident nodes. Junction tree inference requires enumerating the power-set for the

collection of proteins found in each junction tree node; therefore, inference can be performed on

the order of the sum of the cost of computing those power sets. For this connected subgraph,

marginalization would require enumerating 214.644 protein states, a fraction of the 222 protein

states enumerated by naive marginalization.

85

�1000 0 1000 2000 3000 4000 5000 6000 7000 8000
Time (seconds)

�0.02

0.00

0.02

0.04

0.06

0.08

0.10

La
rg

es
t a

bs
ol

ut
e

pr
ot

ei
n

po
st

er
io

r e
rr

or

Naive
Gibbs
Collapsed Gibbs
Junction Tree

Figure 4.4: Convergence of different methods. For each method, the relationship between

the largest posterior error and runtime for protein inference on the subgraph from Figure 4.3

is shown. The Gibbs sampler runtimes were varied by allowing more iterations. Junction tree

inference and naive marginalization runtimes were varied by successively pruning the graph and

allowing PSMs with sequentially higher scores to be pruned. The Gibbs sampler and collapsed

Gibbs sampler series are averages of 10 replicate runs, none of which vary substantially from the

average shown.

86

4.4 Discussion of graphical methods for efficient inference

It has been demonstrated that junction tree inference can be substantially more efficient than

naive marginalization for protein inference. Some subgraphs, though dramatically more efficient

to marginalize using junction tree inference, are still computationally infeasible without pruning.

For instance, one connected subgraph in the S. cerevisiae data set requires 254 steps using naive

inference and 240 steps using junction tree inference; while 240 steps may still be infeasible, the

substantial decrease in the cost of inference may be enough to make the problem approachable

by other methods. For instance, given the states of all proteins in the largest node in the

junction tree of Figure 4.3, the remaining marginalization problem becomes trivial; therefore,

rather than perform the full marginalizatin using the junction tree, it may be favorable to use a

more sophisticated collapsed Gibbs sampler, which samples the configuration of proteins in a few

highly connected junction tree nodes and then performs junction tree inference on the reminaing

tree. Such an approach would substantially reduce the dimensionality of the sampling problem.

Other hybrids between sampling and marginalization may also prove fruitful. For instance, it is

always possible to obtain a fast approximation of posteriors using marginalization and pruning.

This fast estimate may be used to initialize the sampling process or could be used in place of a

uniform proposal distribution.

Junction tree inference may also be used to generalize the pruning procedure to enable faster

and more accurate approximation. Essentially, pruning exploits cases where the joint distribution

can be approximted as the product of multiple independent distributions. A general search for

more exploitable instances of this phenomenon could be performed by analyzing the messages

sent by the message passing algorithm used to perform junction tree inference. In a similar

manner, it may be possible in some instances to avoid marginalizing over variable configurations

with extremely low likelihoods without noticably altering the final posterior estimates. It would

also be interesting to compare these approaches to other iterative approximations like loopy

belief propagation [36].

Furthermore, Figure 4.2 shows that the cost of inference is dominated by a few highly

connected subgraphs. Even in cases when the posterior estimates of the proteins in these graphs

must be estimated with some error, it may be possible to obtain a high-quality estimate of what

87

proteins are present in a complex mixture. Rather than focusing on computing exact posteriors

where it is very difficult, it may be possible to estimate a bound on the posterior estimates and

present the ultimate ranked list of proteins using a partial rather than a total ordering based on

whether there is a provable hierarchy for a pair of proteins.

Formal graphical methods provide a general framework that can be adapted for new models

to see whether they are computationally feasible. General inference methods that work well in

practice on real protein inference graphs will enable the development of more complex models

that reflect real processes in tandem mass spectrometry. For instance, all existing approaches, to

my knowledge, perform protein inference on a bipartite graph, when in actuality the data forms

a tripartite graph; including edges between a spectrum and the second and third-best matching

peptides may allow spurious high-scoring peptides to be explained away by peptides adjacent

to proteins with independent supporting evidence. In a similar manner, modeling competi-

tion between peptides in data-dependent acquisition may help explain why peptide detectability

varies widely between experiments. Enabling efficient inference on more realistic models of the

mass spectrometry process will contribute dramtically to our ability to analyze protein data and

improve our understanding of the biological processes inside the cell.

88

Chapter 5

THE FUTURE OF STATISTICAL ANALYSIS FOR PROTEIN INFERENCE

Quantitative methods, which estimate numeric protein scores instead of simply imperatively

computing the protein set x∗, have a distinct advantage over nonquantitative methods, because

quantitative methods offer information regarding the confidence of the proteins identified. Fur-

thermore, among quantitative methods, probabilistic methods offer easily interpreted scores; a

marginal protein posterior probability indicates the chance that a certain protein is present in the

sample. In contrast, with nonprobabilistic quantitative methods, a score threshold of τX may

be appropriate for one data set, but on another larger data set, the protein threshold should be

stricter τ ′X > τX . This property leads to a method that must be run and adjusted manually to

achieve satisfactory results.

Probabilistically motivated heuristics, like the iterative methods presented in Chapter 1, often

provide very useful and satisfying ways to approach a problem initially, but these method do not

provide an intuitive understanding of the inference problem itself; therefore, numeric heuristics

can be very difficult to improve and extend. Furthermore, because these methods are defined

procedurally, rather than derived from clearly stated assumptions, they can be brittle. For exam-

ple, ProteinProphet is often extremely accurate and efficient; however, for some large data sets,

like the combined replicates from the protein standard of 18 proteins, ProteinProphet becomes

inaccurate and unreliable. Post-processing methods like MAYU [25] attempt to compute more

rigorous FDR estimates after ProteinProphet is run, but the entire approach of “fixing” the

results after the fact, rather than improving the gestalt process of identification, is reminiscient

of the very approach that sometimes makes ProteinProphet unreliable.

Several assumptions stated or implicit in these various approaches are quite similar. For in-

stance, the one- and two-peptide rules, DTASelect, ProteinProphet, EBP, Scaffold, PANORAM-

ICS, and the nested mixture model all make assumptions that make the graph into a tree by

somehow partitioning peptides among their adjacent proteins. This shared assumption is no

89

coincidence: inference on a tree is substantially easier than inference on a general graph. Thus,

rather than starting with a formal and rigorous formulation of the protein identification prob-

lem and then making it more efficient, these methods change the question they ask so that

it becomes easier to answer. Likewise, every method presented makes assumptions to remove

spectral degeneracy, which results in a subgraph on peptides and spectra composed of disjoint

trees.

Rather than making assumptions that make the graph (or a snapshot of the graph in one

iteration) into a tree, the hierarchical model, MSBayes, and Fido attempt to solve the actual

problem by modeling the mass spectrometry process generatively and then taking steps to

compute protein posteriors or the MAP protein set. In the case of the hierarchical statistical

model [29], a naive treatment of inference on the non-tree topology of the graph results in a

runtime exponential in the number of connected proteins in a subgraph; this runtime makes

the procedure of little use in practice. MSBayes, on the other hand, avoids an exponential

runtime by using MCMC. Fido uses graph transformations so that the cost of marginalization

or approximate marginalization is not prohibitively large.

Because the Bayesian methods approach protein inference by modeling the mass spectrome-

try process and then taking the necessary steps to make inference feasible, they have a convenient

modularity that allows the models to be easily improved; for instance, prior information regard-

ing the number of present proteins or prior information regarding peptide detectability can be

easily integrated into these models. Furthermore, if peptide detectability is partly determined

by features of each peptide, then the emission model can be relaxed to allow tied parameters

αj , αj′ , . . .; these tied parameters will introduce many implicit edges into the graph, increasing

the computational cost of inference. Nevertheless, the α values could be fixed by sampling, and

marginalization could efficiently be performed for each set of α values. In contrast, iterative

methods are much more difficult to improve in this way. For instance, it would be quite difficult

to come up with a way to correctly adjust ProteinProphet’s protein-peptide weights to account

for prior information on the number of present proteins. Bayesian approaches, on the other

hand, don’t partition the peptides among adjacent proteins; instead, they take into account

the fact that shared peptides may only be present in a single protein by “explaining away” the

shared peptide when an adjacent protein is present. Because Bayesian methods model mass

90

spectrometry in an intuitive way, it is trivial to see how these methods could incorporate prior

information into the protein prior for a model.

In a similar manner, a noise model is a necessity for inference on large data sets. Intuitively,

each PSM has a chance of incorrectly matching a spectrum with a fairly high score. In a very

large data set, this chance becomes nontrivial and is responsible for erratic behavior in many

protein identification methods. Because iterative methods do not model the mass spectrometry

process generatively, it is difficult to conceive of a reliable means of adding a noise model; in

contrast, for Bayesian methods this is trivial and only requires considering the impact of that

particular noise model on the computational efficiency.

It is easy to see that much more accurate and sophisticated models of the mass spectrometry

process are possible. For example, peptide detectability is best modeled in a sample-specific way,

not statically. Although some of the factors that determine peptide detectability are invariant

between experiments, others will depend on the experiment and on the specific proteins present.

For instance, a highly abundant protein can result in highly abundant adjacent peptides, some

of which may outcompete other less-abundant present peptides with similar mass and retention

time; these less abundant peptides will not be selected during the precursor scan, and will not

be detectable. Bayesian methods are very well-suited to incorporate more complex models of

peptide detectability, which could easily model experiment-specific peptide detectability trends.

Similarly, Bayesian methods can be easily extended to the full tripartite graph. The spectral

degeneracy removed by all methods offers a great deal of unused information: for example, a

spectrum with a spurious highest scoring peptide match is likely to have a lower ranked peptide

match from a present peptide. Using protein-level information, the present peptide may have

other evidence, which could upweight the chances it produced the degenerate spectrum, and

subsequently downweight the effect of the spurious PSM.

These more complex models of mass spectrometry will introduce greater computational bur-

den; however, that must not dissuade us from modeling the process as accurately as possible.

First of all, there is a wealth of information on efficient graphical inference, including approx-

imation techniques such as loopy belief propagation [36]; such techniques could substantially

improve the efficiency of inference even with accurate models.

Furthermore, even if the cost of inference using a more accurate model were prohibitive, a

91

better generative model of the mass spectrometry process could be applied to evaluation. The

target-decoy strategy is so flawed that it makes rigorous comparison of methods very difficult. On

one hand, degenerate peptides may increase the probability estimates of absent target proteins

more than decoy proteins, yielding an incorrectly optimistic estimate of sensitivity and FDR. On

the other hand, because high-scoring decoy peptides are going to stratify uniformly over the

decoy proteins, whereas high-scoring target peptides are more likely to cluster to fewer present

target proteins, target-decoy databases may overestimate the number of absent targets and

yield overly pessimistic FDR estimates [25]. Robust generative models could supplement or

replace the target-decoy strategy, and be used to evaluate the protein sets proposed by different

methods.

Models of the mass spectrometry process and inference techniques are not the only facets

of protein inference that could benefit from increased formality and attention. The problems

of evaluating methods and reporting results are also ripe for fundamental improvements and

novel approaches. For instance, posterior-based rankings on proteins don’t account for non-

independence between the included proteins: if a higher-scoring protein is chosen, that choice

should decrease the rank of another protein that is adjacent to an overlapping set of peptides.

Furthermore, the MAP approach does not adequately illustrate the relative advantage of the

MAP set compared to the protein set yielding the second highest posterior. Often these poor

results lead to biologists interpreting results themselves, even after substantial statistical in-

ference is performed: it is common to ask, “Are there any other sets of proteins that might

result in the identified set x∗ using this method?” Ideally, rigorous statistical procedures should

evaluate methods by mapping all possible sets of present proteins to all possible sets of iden-

tified proteins and estimating the probability that a method would make each identification

from each present set. I posit that such an approach could successfully avoid the problems of

target-decoy competition by directly asking about uncertainty among target proteins. If such an

approach could be made computationally efficient, then it could dramatically improve the utility

of mass spectrometry and substantially improve the confidence with which protein samples can

be analyzed.

Above all, it is important to recognize that a number of very similar approaches to protein

identification have been repeatedly applied in different packaging. When a field is in its infancy,

92

heuristics are the natural approach to take; heuristics are fast sketches of our qualitative goals,

and they are often easy to implement. Nevertheless, as a field grows into maturity, it is increas-

ingly important to approach problems formally. Mass spectrometry is currently experiencing an

exciting watershed moment reminiscient of the early ages of the genomics era, where formal

approaches to open problems promise to not only substantially improve our understanding of

the processes that drive life, but also to propose questions that may result in novel statistical

concepts and methods with myriad other applications.

93

BIBLIOGRAPHY

[1] S. K. Andersen, K. G. Olesen, and F. V. Jensen. HUGIN, a shell for building Bayesian
belief universes for expert systems, pages 332–337. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1990.

[2] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8(2):277–284,
1987.

[3] A. Belle, A. Tanay, L. Bitincka, R. Shamir, and E. K. OShea. Quantification of protein
half-lives in the budding yeast proteome. Proceedings of the National Academy of Sciences,
103(35):13004–13009, 2006.

[4] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society B, 57:289–300, 1995.

[5] B. Efron, R. Tibshirani, J.D. Storey, and V. Tusher. Empirical Bayes analysis of a microarray
experiment. Journal of the American Statistical Association, 96(456):1151–1161, 2001.

[6] J. E. Elias and S. P. Gygi. Target-decoy search strategy for increased confidence in large-
scale protein identifications by mass spectrometry. Nature Methods, 4(3):207–214, 2007.

[7] J. K. Eng, A. L. McCormack, and J. R. Yates, III. An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database. Journal of the
American Society for Mass Spectrometry, 5:976–989, 1994.

[8] J. Feng, D. Q. Naiman, and B. Cooper. Probability-based pattern recognition and statistical
framework for randomization: modeling tandem mass spectrum/peptide sequence false
match frequencies. Bioinformatics, 23(17):2210–2217, 2007.

[9] S. P. Gygi, Y. Rochon, B. Franza, and R. Aebersold. Correlation between protein and mrna
abundance in yeast. Mol. Cell. Biol., 19(3):1720–1730, 1999.

[10] M. R. Hoopmann, G. E. Merrihew, P. D. von Haller, and M. J. MacCoss. Post analysis data
acquisition for the iterative MS/MS sampling of proteomics mixtures. Journal of Proteome
Research, 8(4):1870–1875, 2009.

[11] G. H. Jacobs, G. A. Williams, H. Cahill, and J. Nathans. Emergence of Novel Color Vision in
Mice Engineered to Express a Human Cone Photopigment. Science, 315(5819):1723–1725,
2007.

94

[12] L. Käll, J. Canterbury, J. Weston, W. S. Noble, and M. J. MacCoss. A semi-supervised
machine learning technique for peptide identification from shotgun proteomics datasets.
Nature Methods, 4:923–25, 2007.

[13] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press,
1972.

[14] A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold. Empirical statistical model to
estimate the accuracy of peptide identification made by MS/MS and database search.
Analytical Chemistry, 74:5383–5392, 2002.

[15] S. Kim, N. Gupta, and P. A. Pevzner. Spectral probabilities and generating functions of
tandem mass spectra: a strike against decoy databases. Journal of Proteome Research,
7:3354–3363, 2008.

[16] J. Klimek, J. S. Eddes, L. Hohmann, J. Jackson, A. Peterson, S. Letarte, P. R. Gafken,
J. E. Katz, P. Mallick, H. Lee, A. Schmidt, R. Ossola, J. K. Eng, R. Aebersold, and D. B.
Martin. The standard protein mix database: a diverse data set to assist in the production of
improved peptide and protein identification software tools. Journal of Proteome Research,
7(1):96–1003, 2008.

[17] Q. Li, M. J. MacCoss, and M. Stephens. A nested mixture model for protein identification
using mass spectrometry. Annals of Applied Sciences, 4(2):962–987, 2010.

[18] Y. F. Li, R. J. Arnold, Y. Li, P. Radivojac, Q. Sheng, and H. Tang. A Bayesian approach
to protein inference problem in shotgun proteomics. In M. Vingron and L. Wong, editors,
Proceedings of the Twelfth Annual International Conference on Computational Molecular
Biology, volume 12 of Lecture Notes in Bioinformatics, pages 167–180, Berlin, Germany,
2008. Springer.

[19] P. Mallick, M. Schirle, S. S. Chen, M. R. Flory, H. Lee, D. Martin, J. Ranish, B. Raught,
R. Schmitt, T. Werner, B. Kuster, and R. Aebersold. Computational prediction of proteo-
typic peptides for quantitative proteomics. Nature Biotechnology, 25:125–131, 2006.

[20] A. I. Nesvizhskii. A survey of computational methods and error rate estimation proce-
dures for peptide and protein identification in shotgun proteomics. Journal of Proteomics,
73(11):2092 – 2123, 2010.

[21] A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold. A statistical model for identifying
proteins by tandem mass spectrometry. Analytical Chemistry, 75:4646–4658, 2003.

[22] Q. Pan, O. Shai, L. J. Lee, B. J. Frey, and B. J. Blencowe. Deep surveying of alternative
splicing complexity in the human transcriptome by high-throughput sequencing. advanced
online publication, November 2008.

95

[23] C. Y. Park, A. A. Klammer, L. Käll, M. P. MacCoss, and W. S. Noble. Rapid and accurate
peptide identification from tandem mass spectra. Journal of Proteome Research, 7(7):3022–
3027, 2008.

[24] T. S. Price, M. B. Lucitt, W. Wu, D. J. Austin, A. Pizarro, A. K. Yokum, I. A. Blair,
G. A. FitzGerald, and T. Grosser. EBP, a program for protein identification using multiple
tandem mass spectrometry datasets. Molecular Cell Proteomics, 6(3):527–536, 2007.

[25] L. Reiter, M. Claassen, S. P. Schrimpf, M. Jovanovic, A. Schmidt, J. M. Buhmann, M. O.
Hengartner, and R. Aebersold. Protein identification false discovery rates for very large
proteomics data sets generated by tandem mass spectrometry. Molecular and Cellular
Proteomics, 8(11):2405–2417, 2009.

[26] N. Robertson and P. D. Seymour. Graph minors. iii. planar tree-width. Journal of Combi-
natorial Theory, Series B, 36(1):49–64, 1984.

[27] Brian C. Searle. Scaffold: A bioinformatic tool for validating ms/ms-based proteomic
studies. PROTEOMICS, 10(6):1265–1269, 2010.

[28] O. Serang, M. J. MacCoss, and W. S. Noble. Efficient marginalization to compute protein
posterior probabilities from shotgun mass spectrometry data. Journal of Proteome Research,
9(10):5346–5357, 2010.

[29] C. Shen, Z. Wang, G. Shankar, X. Zhang, and L. Li. A hierarchical statistical model to
assess the confidence of peptides and proteins inferred from tandem mass spectrometry.
Bioinformatics, 24:202–208, 2008.

[30] H. Steen and M. Mann. The ABC’s (and XYZ’s) of peptide sequencing. Nature Reviews
Molecular Cell Biology, 5:699–711, 2004.

[31] D. L. Tabb, C. G. Fernando, and M. C. Chambers. Myrimatch: highly accurate tandem
mass spectral peptide identification by multivariate hypergeometric analysis. Journal of
Proteome Research, 6:654–661, 2007.

[32] D. L. Tabb, W. H. McDonald, and J. R. Yates, III. DTASelect and Contrast: tools for
assembling and comparing protein identifications from shotgun proteomics. Journal of
Proteome Research, 1(1):21–26, 2002.

[33] M. M. Tai. A mathematical model for the determination of total area under glucose
tolerance and other metabolic curves. Diabetes Care, 17(2):152–154, February 1994.

[34] H. Tang, R. J. Arnold, P. Alves, Z. Xun, D. E. Clemmer, M. V. Novotny, J. P. Reilly,
and P. Radivojac. A computational approach toward label-free protein quantification using
predicted peptide detectability. Bioinformatics, 22:e481–e488, 2006.

96

[35] J. K. Taubenberger, A. H. Reid, A. E. Krafft, K. E. Bijwaard, and T. G. Fanning. Initial
Genetic Characterization of the 1918 Spanish Influenza Virus. Science, 275(5307):1793–
1796, 1997.

[36] Yair Weiss. Correctness of local probability propagation in graphical models with loops.
Neural Computation, 12(1):1–41, 2000.

[37] K. Zahradka, D. Slade, A. Bailone, S. Sommer, D. Averbeck, M. Petranovic, A. B. Lind-
ner, and M. Radman. Reassembly of shattered chromosomes in Deinococcus radiodurans.
Nature, 443(7111):569–573, September 2006.

[38] B. Zhang, M. C. Chambers, and D. L. Tabb. Proteomic parsimony through bipartite graph
analysis improves accuracy and transparency. Journal of Proteome Research, 6(9):3549–
3557, 2007.

97

VITA

Oliver Serang was raised outside Philadelphia until he was 12 and then in North Carolina

where he fell in love with programming on a TI-85 graphing calculator (a necessary love of code

optimization followed). Oliver graduated with a B.S. in Computer Engineering at North Carolina

State University and is currently a graduate student in the department of Genome Sciences in

Seattle, Washington, where he acquired a compilation of every good song ever done by anybody.

Oliver has always loved challenging mathematical puzzles that a child can understand (e.g.

“How many distinct ways can you count the votes in a tied election so that candidate A is never

behind candidate B?” http://en.wikipedia.org/wiki/Catalan_number). He is a great fan

of jumping into bodies of water, storms, the smell of wood fires, and the peptide PHADTHAI/L

.

http://en.wikipedia.org/wiki/Catalan_number

	List of Figures
	List of Tables
	Tandem mass spectrometry and its application to complex protein mixtures
	Introduction
	A survey of existing approaches
	Comparison of existing approaches

	Fido: A novel Bayesian approach to protein inference
	Data sets
	Results
	Discussion of accuracy and calibration evaluation

	Quantitative derivation of inference and graph transformations
	Statistical notation
	Assumptions
	Method
	Analysis of approximation errors from pruning

	Extending the Fido method with formal graph-theoretic procedures
	Methods for graphical inference
	Data sets
	Results
	Discussion of graphical methods for efficient inference

	The future of statistical analysis for protein inference
	Bibliography

